
 

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO – UNIRIO 

CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE 

PROGRAMA DE PÓS-GRADUAÇÃO EM ALIMENTOS E NUTRIÇÃO - PPGAN 

 

 

 

 

Mariana Pinheiro Costa Pimentel 

 

 

 

EXPLORING THE GENETIC AND PHENOTYPIC DIVERSITY OF PEARL 

MILLET [Pennisetum Glaucum (L.) R. Br.] VIA UNTARGETED METABOLOMICS 

 

 

 

 

 

 

 

 

 

Rio de Janeiro 

2024



 

Mariana Pinheiro Costa Pimentel 

 

 

 

 

 

EXPLORING THE GENETIC AND PHENOTYPIC DIVERSITY OF PEARL 

MILLET [Pennisetum Glaucum (L.) R. Br.] VIA UNTARGETED METABOLOMICS 

 

 

 

Master's thesis submitted to the Graduate Program 

in Food and Nutrition at the Federal University of 

the State of Rio de Janeiro as a partial requirement 

for obtaining the degree of Master of Science in 

Food. 

 

 

Supervisor: Mariana Simões Larraz Ferreira 

Co-supervisor: Carlos Wanderlei Piler de Carvalho 

Co-supervisor: Millena Cristina Barros Santos 

 

 

Rio de Janeiro  

2024 

 



 

Mariana Pinheiro Costa Pimentel  

 

 

EXPLORING THE GENETIC AND PHENOTYPIC DIVERSITY OF PEARL 

MILLET [Pennisetum Glaucum (L.) R. Br.] VIA UNTARGETED METABOLOMICS 

 

 

Master's thesis submitted to the Graduate Program 

in Food and Nutrition at the Federal University of 

the State of Rio de Janeiro as a partial requirement 

for obtaining the degree of Master of Science in 

Food. 

 

Approved on: 10/06/2024 

 

JURY 

 

________________________________________________ 

President: Prof. Dr. Mariana Simões Larraz Ferreira 

(PPGAN/UNIRIO) – Rio de Janeiro, Brazil 

 

________________________________________________ 

Dr. Paulo Wender Portal Gomes 

(University of California San Diego) – San Diego, United States of America 

 

________________________________________________ 

Dr. Talita Pimenta do Nascimento 

(Embrapa Agroenergia) – Brasília, Brazil  



Agradecimentos 

 

Agradecimentos 

Agradeço à CAPES pela bolsa concedida para execução do Mestrado. 

À UNIRIO, FAPERJ, CNPq MetaboHUB, e PHENOME por financiarem a pesquisa, 

permitindo a realização deste trabalho. 

À UNIRIO e ao Programa de Pós-Graduação em Alimentos e Nutrição (PPGAN) pela formação 

e suporte durante esses dois anos. 

À Embrapa Milho e Sorgo pelo fornecimento das amostras e aos pesquisadores Alexandre 

Martins Abdão dos Passos e Flavio Dessaune Tardin pela ajuda fundamental na compreensão 

da parte agronômica. 

Aos membros da banca por terem aceitado o convite de avaliarem o meu trabalho (Dr. Paulo 

Wender Portal Gomes e Dra. Talita Pimenta do Nascimento). 

Ao Dr. Pierre Petriácq e sua equipe, minha sincera gratidão pela acolhida e por tornarem minha 

experiência de estágio excepcional. 

Aos meus orientadores Dr. Carlos Wanderlei Piler de Carvalho, Dra. Millena C. Barros Santos 

e Dra. Mariana Simões Larraz Ferreira.  

À Dra Millena C. Barros Santos pela amizade e pela orientação. Você foi essencial em expandir 

meus horizontes, me mostrando que é possível sonhar grande e perseguir esses sonhos até torná-

los realidade. Seu exemplo de determinação tem sido uma inspiração constante. Agradeço 

imensamente por todo o incentivo, pelas ideias inovadoras e por estar sempre testando meus 

conhecimentos metabolômicos em conversas aleatórias. Sou também muito grata pela acolhida 

calorosa em Bordeaux e por toda paciência.  

À Dra. Mariana Simões Larraz Ferreira por ter me aceitado como monitora de composição de 

alimentos em 2018 e por ter continuado como minha orientadora desde então. Agradeço por ter 

me mostrado que mesmo um trabalho “a kind of disaster” não está de todo perdido e que 

“milagres existem”. Reconheço que a sua jornada como mentora é desafiadora, mas sua 

contribuição foi fundamental na minha formação profissional e pessoal. 

Aos meus queridos companheiros de laboratório ao longo de todos esses anos, pelos cafés, 

bolos, conversas, risadas e surtos. Foi um prazer compartilhar a simplicidade do dia a dia com 

vocês.  



Agradecimentos 

Aos meus amigos de vida por todo apoio, trilhas, festas e risadas. Não irei nomeá-los pela 

certeza de que vou esquecer alguém. Obrigada por entenderem meus sumiços nos momentos 

intensos do mestrado.  

Aos meus pais, irmão, cunhada e toda a minha família, que são a minha base e têm me apoiado 

incondicionalmente, mesmo sem entenderem completamente o que faço. A gratidão que sinto 

por vocês é imensa.  

À Deus por ter me dado forças e guiado nessa trajetória. 

A todos que, de alguma forma, contribuíram nessa etapa da minha vida.  

Obrigada!



Resumo 

 

RESUMO 

O milheto [Pennisetum glaucum (L.) R. Br.] é uma cultura que se adapta facilmente a diferentes 

ambientes e possui uma composição benéfica para a nutrição humana, embora ainda seja 

considerado um cereal negligenciado e subutilizado. A complexidade de metabólitos dos grãos 

de milheto pode variar de acordo com os genótipos e as condições ambientais, destacando a 

importância do uso de técnicas de metabolômica não direcionada para o mapeamento dessas 

variações. Este estudo teve como objetivo caracterizar de maneira abrangente os metabólitos 

de um grande conjunto de amostras de grãos de milheto e, subsequentemente, identificar 

metabólitos preditores associados com importantes características fenotípicas usando 

metabolômica baseada em espectrometria de massas e ferramentas avançadas de 

bioinformática. Grãos oriundos de 60 populações de polinização aberta e 203 diferentes 

genótipos da coleção nuclear do Banco Ativo de germoplasma de milheto do Brasil foram 

cedidos pela Embrapa Milho e Sorgo. Os grãos inteiros foram liofilizados, moídos e a extração 

dos metabólitos foi realizada de com etanol (80%) de forma automatizada. A metabolômica 

baseada em cromatografia líquida acoplada a espectrometria de massas foi usada para obter os 

perfis de metabólitos. A modelagem linear generalizada com penalização foi aplicada para 

explorar a correlação entre o metabolismo da coleção nuclear e 21 características fenotípicas. 

Dentre os principais achados, 263 metabolitos foram anotados, com predominância de lipídeos 

polares, seguidos por fenilpropanóides e policetídeos. No total, 97 compostos exibiram 

diferença de distribuição entre as populações, com destaque para os flavonoides. A modelagem 

linear generalizada foi capaz de predizer oito traços fenotípicos qualitativos a partir da coleção 

nuclear de milheto pérola, alcançando uma acurácia de 74% a 87%. Foram detectados 834 

metabólitos preditores (575 anotados e 259 unknowns), majoritariamente carboidratos, 

aminoácidos, flavonoides e terpenos. Desses, 23 metabólitos preditores também foram 

encontrados na assinatura metabólica das populações de polinização aberta, podendo ser 

utilizados futuramente para validação do modelo. Essas descobertas ressaltam o valor do perfil 

de metabólitos do milheto, fornecendo informações para programas de melhoramento genético 

voltados para a seleção de cultivares com base em metabólitos de interesse para a alimentação 

humana e na predição de traços fenotípicos. 

Palavras-chave: compostos bioativos, modelagem linear generalizada, aprendizado de 

máquina, metabólitos.
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ABSTRACT 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a crop that easily adapts to various 

environments and has a composition beneficial for human nutrition, although it is still 

considered a neglected and underutilized cereal. The complexity of millet grain metabolites 

varies with genotypes and environmental conditions, highlighting the importance of using non-

targeted metabolomics techniques to map these variations. This study aimed to 

comprehensively characterize the metabolites of a large set of pearl millet grain samples and 

subsequently identify predictive metabolites associated with important phenotypic traits using 

mass spectrometry-based metabolomics and advanced bioinformatics tools. Whole grains from 

60 open-pollinated populations and 203 different genotypes from the core collection of the 

Brazilian Millet Germplasm Active Bank were provided by Embrapa Corn and Sorghum. The 

whole grains were lyophilized, ground, and metabolite extraction was performed with 80% 

ethanol in an automated manner. Liquid chromatography coupled with mass spectrometry-

based metabolomics was used to obtain metabolite profiles. Generalized linear modeling with 

penalty was applied to explore the correlation between the metabolism of the core collection 

and 21 phenotypic traits. Among the main findings, 263 metabolites were annotated, 

predominantly polar lipids, followed by phenylpropanoids and polyketides. In total, 97 

compounds exhibited a distribution difference between populations, with flavonoids being 

particularly notable. Generalized linear modeling was able to predict eight qualitative 

phenotypic traits from the pearl millet core collection, achieving an accuracy of 74% to 87%. 

A total of 834 predictive metabolites (575 annotated and 259 unknowns) were detected, mostly 

carbohydrates, amino acids, flavonoids, and terpenes. Of these, 23 predictive metabolites were 

also found in the metabolic signature of the open-pollinated populations and could be used in 

the future for model validation. These findings underscore the value of the millet metabolite 

profile, providing information for breeding programs aimed at selecting cultivars based on 

metabolites of interest for human food and predicting phenotypic traits. 

Keywords:  bioactive compounds, generalized linear modeling, machine learning, metabolites. 
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INTRODUCTION 

The escalating frequency of droughts and floods in the 21st century, attributed to 

global climate change and the heightened impact of anthropogenic activities, poses a critical 

threat to cereal crop cycles, particularly those of wheat and rice (Feng et al., 2013; Ray et al., 

2012). These factors have significantly impacted grain production and access, exacerbating the 

global food insecurity scenario (FAO, 2022). 

In this context, the world has turned its attention to cereals considered a minority or 

even as neglected and underutilized species (NUS), especially millet crops. The term millet is 

designated to a diverse of minor cereals barnyard millet (Echinochloa esculenta), finger millet 

(Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), 

little millet (Panicum sumatrense), pearl millet (Pennisetum glaucum) e proso millet (Panicum 

miliaceum) being the most representative.  

Among the species, pearl millet [Pennisetum glaucum (L.) R. Br]  is the most widely 

used for human food, fodder and animal feed, accounting for most of the world's millet 

production and trade (FAO, 2021). In Brazil, it is a crucial part of no-till systems in the Cerrado 

region and is cultivated before the second crop period (off-season). Historically, it has been 

used in the country for forage production and silage of cattle and sheep (Jat et al., 2013). 

However, the National Health Surveillance Agency (ANVISA) has recently authorized the use 

of pearl millet for human consumption, reinforcing its potential as a food source (Brasil, 2021). 

Pearl millet has a rich diversity of genotypes, with ICRISAT hosting the most 

extensive collection globally, comprising 23,092 accessions from 52 countries (Upadhyaya et 

al., 2009). This highly diverse crop with a predominantly cross-pollinated breeding system, 

displays high degrees of heterosis for grain and fodder yield and other agronomic traits ( Singh 

& Jauhar, 2006). It offers numerous agronomic advantages due to its resilience against extreme 

weather conditions and climate change, thriving in unpredictable weather patterns and nutrient-

deficient soils, well adapted to semi-arid areas (D. Hunter et al., 2019).  

The nutritional appeal of pearl millet relies on outstanding composition: it is high in 

slowly digestible and resistant starch that is structured into compact granules, which contributes 

to its low glycemic index (Lemgharbi et al., 2017; Mondal et al., 2022); the protein fraction is 

non-allergenic and well balanced in amino acids, except for lysine and threonine. It is also 
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gluten-free, offering a dietary alternative for individuals with celiac disease (Hassan et al., 

2021); Moreover, it contains higher lipids levels in comparison to other cereals, among them 

up to 0.5% bound to starch which slows starch hydrolysis and enhances its hypoglycemic 

properties (Annor et al., 2015, 2017; Pruthi & Bhatia, 1970). For a cereal, it is considered 

elevated in omega-3, linked to greater protection against the development of chronic non-

communicable diseases (NCDs) such as cardiovascular disease, diabetes, metabolic syndrome, 

and cancer (Saleh et al., 2013). Moreover, it presents lower levels of mycotoxins when 

compared to maize (Wilson et al., 2006). Additionally, it is also rich in a range of phenolic 

compounds (PC), most notably ferulic, p-coumaric and cinnamic acids. These PCs are not only 

abundant antioxidants in the human diet but also exhibit numerous bioactivities. They play 

critical roles in biochemical and enzymatic reactions within the human metabolism, particularly 

in their interactions with the gut microbiota (Hanhineva et al., 2010; Rhowell Jr et al., 2022).  

The complexity of pearl millet grain metabolites is intrinsically linked to genotype and 

growing conditions, reflecting the response of biological systems to genetic and environmental 

factors (Fiehn, 2002). Therefore, the application of a metabolomics approach to characterize 

the metabolite profile from a large set of genotypes is essential to evaluate and understand the 

genetic diversity of this crop. Untargeted metabolomics is particularly important in this context 

and, when integrated with predictive analytics and machine learning, enables the prediction of 

plant phenotypic traits based on metabolite data. These strategies, whether used independently 

or in combination, enhance the genetic basis for cultivar selection based on metabolites of 

interest for food and predictive biomarkers. 

To advance research in this area, the present manuscript aimed to characterize the 

metabolite profile of grains from a large germplasm collection of pearl millet using 

metabolomic tools and to assess the capacity of metabolite data in predicting agronomically 

important traits. This work is guided by four major questions: (i) What is the metabolite 

signature of pearl millet grains? (ii) Is it possible to differentiate the germplasm based on 

metabolite data? (iii) What is the role of phenolic compounds? (iv) Which biomarkers can 

predict key phenotypic traits in pearl millet? 

This Master thesis was conducted in the Food and Nutrition Graduate Program 

(Programa de Pós-Graduação em Alimentos e Nutrição-PPGAN) at UNIRIO following the 

research line “Processing, quality, valorization of food, coproducts and residues” in the 

framework of the research project “Metabolomics and proteomics of food”. This work is part 
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of the research group of CNPq “Proteomics and metabolomics of bioactive compounds - Omics 

sciences applied to organisms of economic and biotechnological interest” and was carried out 

in the Laboratory of Bioactives of UNIRIO. This work is a result of an international 

collaboration between two science and technology institutions (EMBRAPA and INRAE), two 

universities (UNIRIO and Université de Bordeaux) and two countries (Brazil and France). The 

samples were produced by Embrapa, and the experimental analytical part was conducted at 

INRAE [UMR Biology of Fruit and Pathology] during a 6-month internship in Bordeaux, 

France. 

This manuscript is divided into four chapters. The first chapter provides a brief 

literature review of the morphological characteristics of pearl millet grains, their chemical 

composition, and nutritional aspects, as well as the phenolic compounds present in pearl millet 

and the metabolomic tools used for compound characterization.  

In the second chapter is presented an original research article currently in preparation, 

which will be submitted to the Journal of Agricultural and Food Chemistry. The article entitled 

“Pearl Millet Towards Human Consumption: Exploring Metabolite Diversity in Open-

Pollinated Populations from the Brazilian Cerrado Biome,” profiles the metabolites of grains 

from sixty open-pollinated populations (OPPs) of pearl millet cultivated in the Brazilian 

Cerrado using UHPLC-HRMS. This work unveils the metabolite signature of the grains and 

identifies metabolites with significant variability from a nutritional perspective. It represents an 

initial step towards understanding the metabolite potential of these OPPs and lays the 

groundwork for developing cultivars selected based on metabolites of interest for food.  

The third chapter also features an original research paper submitted to Metabolomics. 

The paper entitled “Predictive Metabolomics of Pearl Millet Phenotypic Traits Using a 

Germplasm Panel of Genetic Diversity” examines 203 genotypes from the core collection of 

the Brazilian Pearl Millet Germplasm Bank. This study utilizes a novel approach by integrating 

predictive metabolomics with machine learning to investigate the relationships between 

metabolic profiles and phenotypic traits. It successfully predicts eight qualitative phenotypic 

traits using the metabolic data and identifies 834 unique predictive biomarkers.  

Finally, a concluding chapter synthesizes the major findings from all chapters, 

providing an overview of the manuscript, giving some perspectives
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CHAPTER 1 – GENERAL LITERATURE REVIEW 

1. AGRONOMIC CONCEPTS DEFINITIONS  

Genotype is the total genetic constitution of an organism, determined by the set of genes 

arranged on chromosomes (Allem et al., 1996). Plant germplasm refers to the genetic 

information stored in seeds and represents the physical basis of the genetic assets that comprise 

the hereditary material of a species. Within this framework, a germplasm bank collection 

assembles genotypes from diverse geographical and environmental origins, providing essential 

and viable raw material for research and breeding programs (Allem et al., 1996). The nuclear 

collection represents, with minimal repetition, the genetic diversity of a cultivated species and 

its related species. For this purpose, 10% to 15% of the original germplasm collection is 

selected, representing 70% to 80% of the available genetic variability in the species of interest 

and its wild relatives (Allem et al., 1996). 

A cultivar or variety is defined as a group of commercially cultivated genotypes that are 

distinguished by their morphological, physiological, cytological, biochemical, or other 

characteristics from related groups within the same species. These cultivars, when propagated 

retain their distinctive characteristics (Allem et al., 1996). The process of cultivar development 

involves several key steps: first, maintaining or developing sources of genetic variability; 

second, developing open-pollinated cultivars either for direct use or to derive breeding lines; 

and finally, developing lines specifically for the production of hybrids (de Oliveira et al., 2005). 

Open-pollinated populations (OPPs) reproduce naturally without human intervention, 

with pollen distributed by environmental agents like wind and insects among individuals within 

the same population. This process allows OPPs to maintain high genetic variability within the 

population while also preserving genetic stability across generations, providing a valuable 

genetic base for breeders (CIMMYT, 1999). In addition, the term "open-pollinated varieties" 

(OPVs) refers to OPPs that have undergone the breeding process and have been commercially 

released, making them available on the market. Lines/ lineages, on the other hand, are groups 

of individuals that share a common ancestry and are maintained by self-fertilization and 

controlled crosses and have a high degree of genetic uniformity (Allem et al., 1996). 

A composite is a population of plants derived from the uncontrolled inter-crossing of 

different lines and varieties of various origins, creating a genetically mixed group (de Oliveira 
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et al., 2005). Conversely, a synthetic population is created by deliberately combining specific 

parental lines selected for their desirable traits, creating a genetically variable population in 

which individuals, although genetically distinct, share desirable traits (de Oliveira et al., 2005). 

Hybrids are crosses between two different strains and lines or crop types, to maintain 

purity and heterosis (greater vigor than the parent) of the first filial generations of seed so that 

high performance is carried over to the commercial product (Sparks, 2018). 

 

2. MORPHOLOGICAL CHARACTERISTICS OF PEARL MILLET GRAIN 

The term 'millets' encompasses a wide variety of cereals belonging to the family 

Poaceae (Graminiae), traditionally cultivated in Africa and Asia (Geisen et al., 2021). Ten 

species are the most widely cultivated in the world for their grain production: Pearl millet 

(Pennisetum glaucum), Finger millet (Eleusine coracana), Foxtail millet (Setaria italica), 

Japanese barnyard millet (Echinochloa esculenta), Indian barnyard millet (Echinochloa 

frumentacea), Kodo millet (Paspalum scrobiculatum), Little millet (Panicum sumatrense), 

Proso millet (Panicum miliaceum), Tef (Eragrostis tef), Fonio (Digitaria exilis and Digitaria 

iburua) (Figure 1). Sometimes sorghum can be found or put together with millets in this 

presentation (Taylor, 2016). Despite belonging to the same family, there is significant diversity 

at the morphogenetic level, differing in genome size, ploidy levels, and breeding systems (Das 

et al., 2019). 

 

Figure 1. Variety of different millet species. 

Millets have several applications, including use as straw for grazing fodder, silage, and 

hay, as well as in human nutrition.  From these, pearl millet [Pennisetum Glaucum (L.) R. Br.] 

is a highly diverse crop with a predominantly cross-pollinated breeding system and displays 

high degrees of heterosis for grain and fodder yield and other agronomic traits (Singh & Jauhar, 
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2006). Consequently, heterozygous hybrids derived from these parental lines are likely to 

demonstrate superior performance.  

It is highly adapted to arid and semi-arid tropical regions due to its ability to grow in 

adverse conditions (e.g. low soil fertility, high soil pH, high soil Al3+ saturation, low soil 

moisture, high temperature, high soil salinity, and scanty rainfall) (Varshney et al., 2017). It has 

a C4 photosynthetic pathway, characterized by its ability to initially fix carbon dioxide into a 

four-carbon compound during photosynthesis, thereby reducing the energy used in 

photorespiration (Edwards & Huber, 1981). Moreover, it is fast-growing, with an annual 

summer cycle of between 75 and 120 days, reaching a height of 1.5 to 3 meters and a deep root 

system capable of reaching a depth of 3.60 meters (Skerman & Riveros, 1992). The panicles 

are similar in size and shape, being compact and cylindrical with a diameter of 2 to 3 cm, 15 to 

45 cm long, and capable of producing around 500 to 2000 seeds (Durães et al., 2003). 

The grains are spheric, measure about 3 to 4 mm in length, and the relative weight of 

a thousand grains is 3 to 15 g  (Taylor, 2016). The structure is similar to other tropical cereals, 

such as corn and sorghum, but the germ represents about 16.5% of the grain, consequently, the 

endosperm is reduced to 75% and the pericarp comprises about 8.4%. Pericarp is composed of 

three layers: epicarp, mesocarp, and endocarp. In the mesocarp are found the starch granules, 

as in the sorghum grains. Below the pericarp is an integument, which can be pigmented, and 

below it is the aleurone layer, part of the endosperm. Finally, the grain is wrapped in a layer of 

waxy cutin, which protects it from the weather (Figure 2) (Taylor, 2016). The aleurone layer is 

characterized by the presence of primary lipids, proteins, phytins, and other pigments that affect 

the color of the grain (Rachie & Majmudar, 1980). The endosperm is divided into corneum 

(vitreous or hard component) and floury/farinaceous (soft). This differentiation occurs due to 

the presence of a continuous protein matrix, forming a network with no air space and few starch 

granules in the corneal fraction. As it is in the cells of the farinaceous endosperm, the 

conformation is rich in starch granules, aerated spaces, and lower protein content.  
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Figure 2. Structures of pearl millet grain tissues. 

Source: Taylor (2016) 

 

3. CHEMICAL COMPOSITION AND NUTRITIONAL ASPECTS 

Pearl millet is rightly termed as “nutricereal” as it is a good source of energy, 

carbohydrate, protein, fat, ash, dietary fiber, iron and zinc (Table  1). Pearl millet is a rich source 

of energy (361 Kcal/100g) comparable with sorghum (349 Kcal/100g), wheat (346 Kcal/100g), 

rice (345Kcal/100g) and maize (325Kcal/100g) (Satyavathi et al., 2017). The differentiated 

structural distribution gives a unique chemical composition to the millet grain (Abdelrahman et 

al., 1984). The most abundant macronutrients are carbohydrates, especially starch (56-65%), 

with content like wheat (69%) and lower than corn (78%) and rice (85%) (Tomar et al., 2021). 

Free sugars range from 2.6 to 2.8% of the grain, with sucrose being the most important. In 

addition, about 20% of starch is in the form of amylose (Krishnan & Meera, 2018). The 

percentage of resistant starch is 2.8 to 5.1% and of dietary fiber or non-starch polysaccharides 

is 11.9 to 13.3%. This distribution gives millet a low glycemic index (55), favoring postprandial 

glycemic control and making it an important ally in reducing plasma cholesterol (Willett et al., 

2002). 

The second representative group is proteins, which correspond to an average of 11.8% 

of the composition of millet, higher than rice (8.6%), corn (9.2%) and close to sorghum 

(10.7%). The amino acid composition is relatively low in proline, cysteine, methionine and 

tryptophan, but high in lysine (2.8-3.2 g/100 g protein). In addition, this cereal is non-allergenic 
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and gluten-free, making it an alternative for people with celiac disease and other sensitivities 

triggered by gluten consumption (Hassan et al., 2021). 

In relation to the lipid fraction (6.4%), pearl millet has a substantially higher content 

when compared to other cereals, being twice the amount of corn (3.3%) and sorghum (3.4%), 

for example. Linoleic acid (C18:2) makes up about 39 to 45% of lipids, oleic acid (C18:1) 21 

to 27%, and palmitic acid (C16:0) 20 to 21% (Annor et al., 2015). In millets, bound lipids, 

especially linked to starch, can represent 0.5% of total lipid content (Pruthi & Bhatia, 1970).  

As an advantage, this aids in hypoglycemic properties, as the amount and type of fatty acids, 

especially unsaturated ones, significantly decrease starch hydrolysis rates (Annor et al., 2015, 

2017). On the other hand, it implies a challenge for the stability of pearl millet flour due to the 

susceptibility of unsaturated fatty acids to oxidation (Tiwari et al., 2014). Overall, pearl millet 

has mainly B vitamins and tocopherols (vitamin E), which are found in the aleurone layer and 

in the germ. Removing the outer layers by decortication or honing reduces niacin, riboflavin, 

and thiamine levels by about 50% in flour (Nambiar et al., 2011). 

According to Dias-Martins et al, (2018), the ash content of pearl millet is similar to wheat, 

on average 1.8%, but lower than that of oats (2.5%) and higher than corn (1.3%) and rice (0.9%). 

It is also considered a good source of iron, copper, zinc, potassium, calcium, sodium, 

magnesium and phosphorus (Oshodi, 1999). These minerals perform several functions in the 

body, such as synthesis and structural stabilization of proteins, enzyme cofactors, and 

modulation of immune response (Yahia et al., 2019). However, they are mainly found in the 

pericarp, aleurone layer and germ, which can be harmed by grinding (Taylor, 2016).   
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Table 1. Comparison in the nutritive value of pearl millet with wheat and rice. 

Nutrients Constituents (per 100g) Pearl Millet Wheat Rice 

 

Macro 

nutrients 

 

Carbohydrates 

Sugars (g) 67.5 71.2 78.2 

Fiber (g) 1.2 1.2 0.2 

Proteins (g) 11.6 11.8 6.8 

Fats (g) 5.0 1.5 0.5 

Micronutrients 

 

 

Minerals 

Calcium (mg) 42.0 41.0 10.0 

Phosphorous (mg) 296.0 306.0 160.0 

Iron (mg) 8.0 5.3 0.7 

Zinc (mg) 3.1 2.7 1.4 

Sodium (mg) 10.9 17.1 - 

Magnesium (mg) 137.0 138.0 90.0 

 

 

Vitamins 

Vitamin A (mcg) 132.0 64.0 0.0 

Thiamine (mg) 0.3 0.5 0.1 

Riboflavin (mg) 0.3 0.2 0.1 

Niacin (mg) 2.3 5.5 1.9 

Folic acid (mcg) 45.5 36.6 8.0 

Source: Satyavathi et al., (2017) 

Despite having a rich nutritional composition, pearl millet also has some anti-nutritional 

factors, such as phytic acid, which has a chelating capacity and decreases the bioavailability of 

minerals, especially zinc, potassium, calcium, iron and magnesium (Boncompagni et al., 2018). 

In addition to having a higher content of oligosaccharides of the raffinose family (~8%) than 

other cereals (0.1 – 1.6%) and like legumes (e.g. pea 6.9%), these are also considered 

antinutritional factors as they have lower bioavailability and cause discomfort and flatulence 

(Henry & Saini, 1989; Jones et al., 1999; Mondal et al., 2022). However, there is increasing 

recognition of the health benefits associated with many anti-nutrients, especially in preventing 
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diseases like cancer and heart disease (Champ, 2002). In addition, the presence of phenolic 

compounds, mainly of the flavonoid class such as condensed tannins and C-glucosyl flavones, 

known to be goitrogenic, also act as antinutritional factors in pearl millet. 

In general, these antinutritional factors reduce the digestibility of proteins and 

carbohydrates, complex minerals by decreasing bioavailability, and impair the performance of 

proteolytic and amylolytic enzymes (Boncompagni et al., 2018; Nambiar et al., 2011). It should 

be noted that the adverse biological effects caused by these antinutritional factors, mainly 

related to thyroid metabolism, are variable and depend on the genotype, the composition of 

phenolic compounds (PC), and the type of processing applied (Boncompagni et al., 2018; 

Theodoro et al., 2021). 

PC are the most abundant and numerous phytochemicals in plants (Yahia et al., 2019). 

In pearl millet grains, the main ones are cinnamic acid derivatives (hydroxycinnamic acid, 

coumaric acid, ferulic acid, sinapic acid) and in smaller concentrations benzoic acid derivatives 

(hydroxybenzoic acid, gallic acid, p-hydroxybenzoic acid, vanillic, syringic and 

protocatechuic) (Nani et al., 2015). Phenolic compounds have numerous bioactivities related to 

potential beneficial effects on health, mainly related to antioxidant and anti-inflammatory 

activity, demonstrating a preventive effect on several diseases such as diabetes, obesity, cancer, 

cardiovascular diseases, osteoporosis, neurodegenerative diseases, among others (de Araújo et 

al., 2021). A diet rich in cereal PC has even been associated with improved gut health (Rhowell 

Jr et al., 2022), due to its involvement in modulating the microbiota and gut immune response, 

however, these interaction mechanisms are not yet fully elucidated (Zhang et al., 2020). 

PC are secondary plant metabolites that are synthesized in adverse situations to act as 

protective factors. In cereals, they have a protective role in conditions of extreme temperatures, 

drought and salinity, through the capacity of osmoregulation (Chalker‐Scott, 1999). They also 

have other interesting properties such as color and flavor checking, synthesis of enzymes and 

vitamins, in addition to minimizing the effects of lipid peroxidation (Vuolo et al., 2019). 

However, its content in the plant matrix depends on several factors, including genetic variety 

of species, soil and climate conditions, growth conditions, and others (de la Rosa et al., 2019). 

In cereals, the phenolic profile can also vary between genotypes, aiding in the selection of 

varieties for greater retention of bioactive compounds, in addition to also varying during the 

grain maturation (Santos et al., 2019). In fact, the stage of maturation of the grain is decisive, 
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since the formation of PC occurs from the amino acids tyrosine, phenylalanine and malonate, 

in the early stages of grain development (Zhen et al., 2016). 

Chemically, PCs are substances composed of at least one aromatic core containing one 

or more hydroxyl groups. PCs are widely distributed in plant tissues and can be found in fruits, 

seeds, leaves, stems, and roots in soluble (free or conjugated esters) and insoluble (bound) 

forms. Soluble PCs are present in free forms within the vacuole of the plant cell or in conjugated 

form esterified to sugars or other low molecular weight compounds, whereas insoluble 

phenolics are covalently bound to plant cell wall components (Zhang et al., 2020). 

There are more than 8000 PC already identified that are divided into two major groups: 

flavonoids and non-flavonoids (Figure 3). Flavonoids have in their chemical structure two 

aromatic rings connected by a heterocyclic ring (C6-C3-C6) and are most often found in their 

glycosylated form (Bravo, 1998). The class of flavonoids is divided into several subclasses, the 

main ones being: anthocyanins, flavanones, isoflavones, flavones, flavonols, and flavanols. 

Among the non-flavonoid compounds, there are stilbenes, lignans, coumarins and phenolic 

acids, which are of great interest for human consumption. Phenolic acids can be derived from 

hydroxycinnamic acid (C6-C3) (e.g., caffeic acid, p-coumaric acid) or hydroxybenzoic acid 

(C6-C6) (e.g., vanillic acid, gallic acid, ellagic acid) (Mazza & Brouillard, 1987). 

PCs are distributed differently in the different tissues of cereal grains. About 60% of 

the PC of millet is found in the bound form and is concentrated in the outer layers of the grain 

(bran and aleurone layer) which represent about 12% of the grain mass (Devi et al., 2014). 

However, to date, the literature lacks and diverges information regarding the identification and 

quantification of these compounds in pearl millet. 

The main PCs found in pearl millet are ferulic (trans and cis), p-coumaric and cinnamic 

acids (McDonough et al., 2000), and in pearl millet p-coumaric acid represents about 80%, and 

ferulic acid 12% of the total PC (Nani et al., 2015). In addition, a study evaluating seven 

varieties of pearl millet by paper chromatography identified the following PCs: vanillic, 

syringic, salicylic, benzoic p-OH, and melilotic acid (Nambiar et al., 2012). Also, ferulic acid 

was identified as the most abundant phenolic acid bound, while protocatechuic acid was the 

most abundant free phenolic acid in the finger millet species (Subba Rao & Muralikrishna, 

2002). 
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Pearl millet contains a diversity of flavonoids including anthocyanidins, chalcones, 

flavanols, flavones and flavanones. In addition, some colored grain varieties harbor 

proanthocyanidins (condensed tannins), which contribute substantially to the reddish coloration 

(Dykes & Rooney, 2006; McDonough et al., 2000; Serna Saldivar, 2003). In pearl millet, 

flavonoids account for approximately 90% of the free PC content (Balli, Bellumori, Orlandini, 

et al., 2020; Balli, Bellumori, Pucci, et al., 2020). The presence of three C-glycosylated 

flavonoids (luteolin-(7-O-glucopyranosyl)-8-C-glucopyranoside, vicenin II and vitexin), one 

Flavonoid O-glucosylated (vitexin 2"-O-rhamnoside) and five cinnamic derivatives (Balli, 

Bellumori, Orlandini, et al., 2020; Balli, Bellumori, Pucci, et al., 2020) stand out
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 Figure 3. Major classes of phenolic compounds  

Source:  Rodríguez Pérez, 2016
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4. METABOLOMICS TOOLS FOR METABOLITE SCREEN PROFILING AND 

CROP NUTRITIONAL ELUCIDATION 

Metabolomics is a large-scale analytical approach used to characterize the set of low 

molecular weight molecules synthesized by living organisms (metabolome) (Jacobs et al., 

2021). It can be divided into quantitative or semi-quantitative analyses of known metabolites 

(targeted) or a global analysis of metabolites in a qualitative and semi-quantitative manner 

(untargeted) (Sussulini, 2017). In a metabolomic experiment, the goal is to gather as much 

metabolic information as possible from an organism or biological system ( Xu et al., 2014; Yi 

et al., 2016). 

Different approaches are employed to assist in the characterization of the metabolome 

and can provide insight into metabolism. For example, metabolic footprinting, which evaluates 

the metabolites excreted by a cell/organism under controlled conditions; metabolic profiling, 

used to identify and quantify predefined metabolites generally related to a specific metabolic 

pathway; and metabolic fingerprinting, a global, high-throughput, and rapid analysis to provide 

sample classification, also used as a screening tool to discriminate samples from different 

biological states or origins (Astarita & Langridge, 2014; Ellis et al., 2007). 

The most commonly used equipments include nuclear magnetic resonance (NMR) and 

mass spectrometry (MS). Generally, mass spectrometry is coupled with a separation technique, 

such as gas chromatography (GC-MS), liquid chromatography (LC-MS), or capillary 

electrophoresis (CE-MS), which increases selectivity, sensitivity, separation efficiency, and 

provides structural and molar mass information. These techniques is regarded as an 

indispensable and irreplaceable tool for the analysis of biomolecules and has been widely used 

to characterize and quantify metabolites of grain crops (Lima et al., 2024). 

Metabolomics can bring insights through the characterization of health-relevant 

metabolites, particularly bioactive compounds. From a national perspective, Santos et al., 

(2019) elucidated the phenolic composition and regulation of metabolism in seven Brazilian 

wheat (Triticum aestivum) genotypes throughout grain maturation. The phenolic composition 

of wheat depends on the technological quality, being higher in flours with higher gluten content 

(Santos et al., 2022). Moreover, the first study to use an omics approach for the characterization 

of PC in pigmented rice bran identified black rice bran as potential for human nutrition (Santos 

et al., 2021). Additionally, it was seen that thermoplastic extrusion can significantly increase 
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the content of free PC in sorghum (Sorghum bicolor (L.)) genotypes with condensed tannins 

(D’Almeida et al., 2021). In pearl millet, Chandrasekara & Shahidi (2011) performed the first 

reported metabolic profiling work applying LC-MS/MS demonstrating that bound PC are the 

most abundant for this cereal, but it should be noted that the composition of PC varies between 

different fractions, genotypes and environment conditions. Furthermore, the profile of phenolic 

compounds specifically accumulated in grains of hybrid millets was demonstrated (Li et al., 

2018).  

From another perspective, various studies have demonstrated the potential of 

metabolomics to assist plant breeding programs. For example, Dhawale (2022) identified key 

metabolites associated with drought tolerance in millet (Panicum sumatrense L.), contributing 

to the understanding of abiotic stress responses. Cao et al., (2022) revealed the molecular 

mechanism of drought-induced stress in the species Panicum miliaceum, demonstrating an 

important role in the expression of anthocyanins. Additionally, grains from four genotypes of 

durum wheat (Triticum durum Desf.) grown over three consecutive years unveiled major 

influences of genotype-environment interactions affecting levels of phytosterols, tocopherols 

and unsaturated fatty acids (Beleggia et al., 2013).  

Untargeted metabolomics can also be used to discover biomarkers, which predict 

phenotypes before these characteristics become apparent, thereby optimizing the selection of 

crop populations (Steinfath et al., 2010). To address the challenge of the complexity of 

metabolic data (e.g. outnumbering features in the samples, high noise levels, batch effects, 

missing values), employing mathematical and machine learning (ML) tools has proven 

effective in supporting metabolomics data analysis (Liebal et al., 2020). In tartary buckwheat 

(Fagopyrum tataricum), three predictor biomarkers (kaempferol-3-O-hexoside, kaempferol-7-

O-glucoside, and naringenin-O-hexoside) were established to estimate the total phenolic 

content and antioxidant capacity of seeds using a random forest model (Wang et al., 2023). 

Moreover, metabolite levels in the tyrosine pathway were effective predictors of yield when 

analyzing five hybrid rice varieties (Dan et al., 2021). One step further, predictive multi-omics 

successfully predicted 21 agronomic traits across 197 recombinant inbred lines of foxtail millet 

over three distinct years (Wei et al., 2023).  

In this context, the present work proposed to apply untargeted metabolomics and 

predictive tools to initially characterize the metabolites in pearl millet grains and subsequently 

identify predictive biomarkers for important phenotypic trait
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CHAPTER 4: MAIN CONCLUSION 

Pearl millet is emerging prominently in a challenging global context where natural resources 

are being depleted, and climate change is impacting major cereal crops. Additionally, 

population growth and the urgent need to ensure global food security position it as a key player. 

Despite these advantages, it remains an underutilized crop with significant nutritional potential 

that needs to be fully leveraged. The comprehensive metabolomic analyses conducted on a large 

sample set of pearl millet have provided the background robustness of our findings. Our studies, 

exploring both the metabolite diversity in open-pollinated populations from the Brazilian 

Cerrado and the predictive metabolomics of phenotypic traits in a Brazilian germplasm core 

collection, collectively emphasize the power of untargeted metabolomics.  

Metabolic profiling revealed what can be described as the unique metabolic signature of pearl 

millet, featuring a broad spectrum of lipid compounds and phenylpropanoids and polyketides. 

Eight phenolic compounds were annotated, gingerol, caffeate, p-coumaric acid and diosmin as 

level 1. Furthermore, flavonoids showed the highest variability in abundance among the 

samples. All these results highlight the bioactive potential of pearl millet grains. The integration 

of predictive metabolomics with machine learning has proven effective in predicting eight 

qualitative phenotypic traits. Moreover, this approach has successfully identified predictor 

biomarkers. Of these, 23 belong to the metabolic signature, and 15 are associated with high 

variability in abundance in the OPP samples. This study represents the first attempt to exploit 

a germplasm bank of pearl millet for metabolome characterization and predictive modeling of 

critical phenotypic traits, providing a valuable tool for future breeding programs to develop 

cultivars based on both agronomic attributes and metabolites of interest for food applications. 

From a future perspective, integrating the search for metabolites of interest and biomarkers with 

Genome-Wide Marker Association Studies could be instrumental in identifying genes and 

crucial biochemical pathways associated with these markers. 
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