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Resumo  

O Bisfenol A é um poluente químico recalcitrante de grande preocupação devido à 

sua toxicidade, tanto para o meio ambiente quanto para a saúde humana. Este composto 

está presente em efluentes humanos, o que acarreta em sua entrada nos ecossistemas 

aquáticos, ocasionando efeitos tóxicos (agudos e crônicos) para espécies de invertebrados 

e vertebrados. O presente trabalho consiste de um capítulo único, o qual foi publicado na 

revista Environmental Pollution. O objetivo deste artigo foi determinar a toxicidade aguda 

do BPA para espécies estuarino-marinhas tropicais de quatro níveis tróficos e integrar os 

valores de toxicidade do BPA usando a análise de distribuição de sensibilidade das 

espécies (SSD). Os organismos testados foram a microalga Tetraselmis sp., o herbívoro 

zooplanctônico Artemia salina, o invertebrado depositívoro Heleobia australis e o peixe 

onívoro Poecilia vivipara. A microalga apresentou a maior tolerância entre os organismos 

testados, sem uma resposta dependente da concentração. A sensibilidade ao BPA 

aumentou a partir de A. salina, seguido de H. australis, e P. vivipara. Embora tenhamos 

obtido uma hierarquia de toxicidade em relação aos níveis tróficos, a SSD não revelou um 

padrão entre os mesmos. O presente trabalhou apresentou resultados quanto a toxicidade 

ao BPA a espécies ainda não testadas e evidenciou respostas distintas entre organismos de 

diferentes níveis tróficos.   

  

Palavras-chave: BPA, toxicidade, teste de letalidade, LC50, concentração-resposta, 

distribuição de sensibilidade de espécies  
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Abstract   

Bisphenol A is a recalcitrant chemical pollutant of great concern due to its 

toxicity, both for the environment and for human health. BPA is a compound that is 

present in our effluents, which leads to its entry into aquatic ecosystems, causing toxic 

effects (acute and chronic) for invertebrates and vertebrates. The present work consists of 

a single chapter, which was published in the journal Environmental Pollution. This study 

aimed to determine the acute toxicity of BPA for tropical estuarine marine species of four 

trophic levels and to integrate the toxicity values of BPA using the species sensitivity 

distribution analysis (SSD). The tested organisms were the microalgae Tetraselmis sp., 

the zooplanktonic herbivore Artemia salina, the depositivorous invertebrate Heleobia 

australis, and the omnivorous fish Poecilia vivipara. The microalgae showed the highest 

tolerance among the tested organisms, without a concentration-dependent response. 

Species sensitivity have increased from A. salina, followed by H. australis, to P. vivipara. 

Although we obtained a hierarchy of toxicity about trophic levels, SSD did not reveal a 

pattern among them. The present study showed sensitivity results of not yet investigated 

species and evidenced distinct responses between organisms of different trophic levels.  

  

Keywords: BPA, toxicity, lethality test, LC50, concentration-response, species sensitivity 

distribution.  
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Introdução  

Com o advento das novas tecnologias, e a demanda por diferentes produtos e 

serviços, a produção de novos poluentes tem se tornado inevitável. Muitos desses 

poluentes são ditos como poluentes emergentes, os quais consistem em produtos advindos 

de atividades industriais como resíduos químicos, medicamentos, cosméticos, pesticidas, 

plastificantes, surfactantes (Taheran et al., 2018). Muitas vezes esses poluentes estão 

presentes em nossos efluentes, fazendo com que sejam detectados em águas superficiais, 

em nossa água potável, assim como em vários outros corpos d`água (Liu et al., 2019). 

Poluentes emergentes podem ser caracterizados como compostos recalcitrantes, ou seja, 

que apresentam difícil degradação. As moléculas recalcitrantes podem ser de origem 

natural ou xenobiótica, isto é, estranhas ao ambiente, advindas de processos 

antropogênicos (Gaylarde et al., 2005).   

O Bisfenol A (BPA) é um desses compostos xenobióticos recalcitrantes, 

apresentando alta produção, uma vez que seu uso está relacionado à fabricação de resinas 

epóxi, resinas fenólicas, poliacrilatos, policarbonatos, poliésteres e à fabricação dos 

revestimentos de latas de alimentos (Staples et al., 1998). Em ambientes aquáticos, ao ser 

despejado, o BPA pode causar inúmeros impactos, uma vez que seus níveis podem chegar 

a valores significativos, sendo em média (e valor máximo): 42,3 (63.640) ng L-1 em água 

doce; 28,6 (5.100) ng L-1 em água salobra; e 17,7 (1.918) ng L-1 na água do mar (Wu & 

Seebacher, 2020). Além da possível presença em altas concentrações, a persistência deste 

composto em ambientes aquáticos é variável visto que seu tempo de degradação varia de 

menos de 5 dias (Kang et al., 2004; Kang & Kondo, 2005) a mais de 30 dias (Ying & 

Kookana, 2003; Kang & Kondo, 2005). Com isso, a ocorrência e persistência deste 

composto acarreta em toxicidade, tanto aguda quanto crônica, em organismos presentes 

em sistemas aquáticos contaminados (revisado em Kang et al., 2007; Mihaich et al., 

2009). Alguns dos impactos causados pelo BPA em organismos aquáticos culminam na 

desregulação do sistema endócrino (revisado em Kang et al., 2007; Pinto et al., 2019); em 

problemas na reprodução de peixes e em seus estágios iniciais de vida, inibição de 

crescimento e alteração do comportamento (Lahnsteiner et al., 2005; Zha & Wang, 2006; 

Wang et al., 2019); e na inibição de processos fisiológicos de algas (Ji et al., 2014; Zhang 

et al., 2012, 2015; Ben Ouada et al., 2018).  
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Porém, mesmo com vários estudos a respeito do BPA, os efeitos do mesmo em 

invertebrados aquáticos e produtores primários ainda não são, de todo, conhecidos, 

especificamente em espécies marinhas e estuarinas. Os principais estudos e dados 

disponíveis atualmente para espécies aquáticas se refere a peixes de água doce (como em 

Metcalfe et al., 2001; Sohoni et al., 2001; Staples et al., 2002; Yokota et al., 2008; Kim et 

al. , 2018, 2020; Pinto et al., 2019).  

Alguns estudos com análogos do BPA já mostram que esses compostos podem 

biomagnificar e bioacumular em organismos aquáticos, o que sugere que o bisfenol A 

tenha a capacidade de biomagnificar ao longo dos níveis tróficos da cadeia alimentar 

aquática (Ji et al., 2014; Guo et al., 2017; Wang et al., 2017; Kim et al., 2020; Wu & 

Seebacher, 2020). No entanto, não se tem registros de estudos quanto aos impactos do 

BPA em sistemas marinho-estuarinos. Logo, o presente trabalho visou a determinação 

dos possíveis efeitos da toxicidade aguda do BPA em quatro espécies estuarinas e 

marinhas de diferentes níveis tróficos, bem como a comparação da sensibilidade das 

respectivas espécies quanto aos seus níveis tróficos.  
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Abstract   

BPA is chemical pollutant of very high concern due to its toxicity to the environment and 

risks for human health. Environmental concern consists in BPA entrance into aquatic 

ecosystems due to acute and chronic toxicity to invertebrates and vertebrates. This study 

aimed to determine acute BPA toxicity to tropical estuarine-marine species of four trophic 

levels and integrate BPA toxicity values using species sensitivity distribution (SSD) 

analysis. Our hypothesis is that BPA toxicity increases towards higher trophic levels. 

Microalga (Tetraselmis sp.), zooplanktonic grazer (Artemia salina), deposit-feeder 

invertebrate (Heleobia australis), and omnivorous fish (Poecilia vivipara) were chosen as 

experimental models. Tetraselmis sp. showed the highest BPA tolerance, without a 

concentration-dependent response. Species sensitivity have increased from A. salina  

(LC50,96h=107.2 mgL-1), followed by H. australis (LC50,96h=11.53.5 mgL-1), to P. vivipara 

(LC50,96h= 3.5 mgL-1). Despite the toxicity hierarchy towards trophic levels, which 

partially supported our hypothesis, SSD did not evidence a clear pattern among estuarine-

marine trophic groups. Our study disclosed the sensitivity of not yet investigated species 

to BPA and, in an integrative way, highlighted BPA toxic effects at different trophic 

levels. Although estimated acute hazardous concentration (HC5= 1.18 mg L-1) for 

estuarine and marine species was higher than environmentally relevant concentrations, 

sublethal adverse effects induced by BPA exposure may lead to unbalances in population 

levels and consequently affect the ecological functioning of tropical coastal systems.   

Capsule: Acute BPA toxicity was determined to tropical estuarine-marine species of 

distinct trophic levels, their LC50s were integrated for SSD and HC5 analyses.  

Keywords: concentration-response; endocrine disrupters; lethality test; LC50; Species 

Sensitivity Distribution (SSD).    
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1.  Introduction  

Bisphenol A (BPA), 2,2-bis(4-hydroxydiphenyl) propane, is one of the most used 

industrial chemicals worldwide that has been applied as a primary raw material for the 

production of polycarbonate plastics, epoxy resins, phenolic resins, and food lacquer 

coatings (Staples et al., 1998). World production of BPA reaches more than 7.3 billion of 

dollars annually and more than 100 tons year-1 are released into the environment 

(Vandenberg et al., 2009; Corrales et al., 2015; Repossi et al., 2016). BPA is listed as a 

chemical compound of very high concern in the European Union (EU) due to its toxicity 

to reproduction (European Chemicals Agency - ECHA ED/30/2017) and risk of 

endocrine disrupting effects for the environment (ECHA ED/01/2017) and human health 

(ECHA ED/01/2018). Despite its toxicity, BPA is still permitted for general use in 

materials that are in contact with food; at least while the European Food Safety Authority 

(EFSA) reevaluates the risks of BPA in foodstuffs to public health. Due to the regulations 

on BPA (e.g., banned use in baby bottles), a variety of bisphenol analogues is being 

widely manufactured and applied; however, BPA is still one of the most predominant 

analogues that contaminates aquatic systems (Wang et al., 2017).  

The major environmental risk source consists in BPA entrance into aquatic 

ecosystems through the release of effluents, sewage treatment wastewater, landfill 

leachate or natural degradation of other compounds (Yamamoto et al., 2001; Wintgens et 

al., 2003; Gatidou et al., 2007). Considering the inputs of human activities and local 

characteristics of aquatic ecosystems, BPA contamination may reach high levels with 

geometric mean (and maximum) recorded values of 42.3 (63,640) ng L-1 in freshwater, 

28.6 (5,100) ng L-1 in brackish water, and 17.7 (1,918) ng L-1 in seawater (meta-analysis 

performed by Wu & Seebacher, 2020). Moreover, the positive relationship between BPA 

contamination and microplastic particles in marine fish also suggests that plastic leachates 

may act as an important source of BPA contamination for aquatic species (Barboza et al., 

2020). For this reason, BPA may lead to acute and chronic toxicity to aquatic invertebrate 

and vertebrate species in contaminated environments (reviewed in Kang et al., 2007; 

Mihaic et al., 2009). Several endocrine-disruptive effects of BPA have been detected in 

aquatic species (reviewed in Kang et al., 2007; Pinto et al., 2019). Chronic exposure to 

BPA was also related to some injuries in fish reproduction and early life stages, inhibition 

of male fish growth, and abnormal fish behavior (Lahnsteiner et al., 2005; Zha & Wang, 

2006; Wang et al., 2019). Early life stages of invertebrates and vertebrates are highly 
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sensitive to BPA exposure, in which invertebrates and amphibians seem to be particularly 

affected (reviewed in Wu & Seebacher, 2020). In addition, BPA inhibition of algae 

physiological processes (e.g. cell division and photosynthesis) has been also detected (Ji 

et al., 2014; Zhang et al., 2012, 2015; Ben Ouada et al., 2018).   

Despite the growing number of studies (e.g., Chen et al., 2002; Hill et al., 2002; 

Pascoe et al., 2002; Mihaich et al., 2009; Guo et al. 2017; Ben Ouada et al., 2018; Tato et 

al., 2018), the BPA effects on aquatic invertebrates and primary producers is still barely 

known, especially for marine and estuarine species. Most of the available effect data on 

aquatic organisms has been performed using freshwater fish (e.g., Metcalfe et al., 2001; 

Sohoni et al., 2001; Staples et al., 2002; Yokota et al., 2008; Kim et al., 2018, 2020; Pinto 

et al., 2019). Bioaccumulation and biomagnification of bisphenol analogues have been 

detected in aquatic organisms and their trophic magnification factors indicate that 

bisphenol is prone to biomagnify in aquatic food webs (Ji et al., 2014; Guo et al., 2017; 

Wang et al., 2017; Kim et al., 2020; Wu & Seebacher, 2020). However, the impacts of 

BPA within marine-estuarine systems context, i.e., populations from different trophic 

levels, have never been evaluated.  

Therefore, the present study aimed to determine acute BPA toxicity to four 

estuarine and marine species from distinct trophic levels, as well as to compare species 

sensitivity regarding their trophic levels. For that, a species sensitivity distribution (SSD) 

curve was assembled and hazardous concentration (HC5) and fraction affected (FA) 

estimated based on our results and data available in the literature for marine and estuarine 

species amongst the four trophic groups. Our hypothesis is that BPA toxicity increases 

towards higher trophic levels. The primary producer, zooplanktonic grazer, invertebrate 

deposit-feeder, and omnivorous fish chosen as model organisms are representative 

species of tropical coastal ecosystems. In addition to disclose the sensitivity of not yet 

investigated species to BPA, the present study highlights, in an integrative way, the BPA 

toxic effects at different trophic levels providing evidences of the risks for estuarine and 

marine species and addressing their implications to ecological functioning of tropical 

coastal systems.  
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2. Material and Methods  

2.1 Organisms  

A unicellular primary producer, two invertebrates - one grazer and one 

depositivore, and one omnivorous fish were chosen for acute experiments to evaluate the 

risk of BPA exposure. Three of them are representative species of coastal aquatic systems 

that were already used for toxicity tests (US EPA, 1975; OECD, 2011; OECD, 2019): the 

chlorophyte microalga Tetraselmis sp. (Falcão et al., 2020; Li et al., 2017), the crustacean 

Artemia salina (Nunes et al., 2006), and the fish Poecilia vivipara (Almeida et al., 2019; 

Hawkins et al., 2003; Wester & Vos, 1994). The benthic gastropod Heleobia australis is a 

non-standard organism that was tested for the first time as candidate species for toxicity 

assays. This aquatic gastropod has been proposed as a bioindicator species in a tropical 

estuarine system (Neves et al., 2013a) and plays a crucial role for nutrient cycling in 

muddy compartments of aquatic environments (Figueiredo-Barros et al., 2006). 

Moreover, the snail H. australis comprises most of the recommended criteria for toxicity 

test species selection (Chapman, 2002)  

Clonal culture of Tetraselmis sp. used in the present study was isolated from 

Guanabara Bay, Rio de Janeiro state (22°46’05.73” S, 43°10’04.31” W). Microalga stock 

culture was maintained in filtered seawater - FSW (glass-fiber filter, MilliporeAP-40, 

Millipore Brazil) supplemented with L2 enrichment medium. The culture was grown at 

exponential growth phase at a cell density of 1.14 x 106 cells mL-1 in controlled 

conditions at Laboratory of Cultures and Experiments from the Federal University of the 

State of Rio de Janeiro (UNIRIO); for detailed culture conditions see Neves et al. (2019). 

Adult individuals of the brine shrimp A. salina were obtained from a specialized 

aquafarm and acclimated for experimental conditions 48 h-prior to acute toxicity test.  

Adult individuals of H. australis and P. vivipara were collected at Rodrigo de 

Freitas Lagoon, Rio de Janeiro, Brazil (22° 58′ 16.02″ S, 43° 12′ 42.18″ W). Scientific 

research and collecting permit authorizing field studies were obtained from Chico 

Mendes Institute for Biodiversity Conservation (ICMBio), Brazilian Ministry of the 

Environment (permits numbers: 48201-2 and 56897-6). Rodrigo de Freitas Lagoon is an 

urban estuarine system (Vezzone et al., 2019), with no prior report of BPA 

contamination. Samples of superficial mud sediment (≈5 cm) were collected from shallow 

littoral sites (<30 cm depth) using a trowel and sieved (1 mm mesh net) to keep the adult 

snails. In the laboratory, H. australis was kept in a 1.5 L container filled with sediment 
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and water from the sampling site for 72 h of acclimatization to experimental conditions 

(24°C). Individuals of P. vivipara were caught in the same site of H. australis through a 

baited cylindrical trap (60 cm long × 25 cm height; 3 mm mesh) which was set in a 

shallow (<50 cm depth) area of the lagoon and retrieved after 2 h. After transportation to 

the laboratory, fish were acclimated to experimental conditions (24°C) in an aquarium (40 

L) filled with aerated and filtered brackish water (FBW) for 14 days before experiments. 

Water was kept in the salinity measured at sampling site, thus experimental water salinity 

for gastropod and fish was adjusted to 6.87 using deionized water and seawater, after 

filtration (glass-fiber filter, MilliporeAP-40, Millipore Brazil) and sterilization by 

autoclaving. In addition, P. vivipara individuals were fed twice a day ad libitum with 

commercial fish food.  

  

2.2 Stock and Test Solution Preparation  

BPA stock solution (300 mg L-1) was prepared by placing the weighed quantity of 

the commercial chemical BPA (Sigma-Aldrich, USA, purity 99%; CAS number: 80-05-7; 

EC number: 201-245-8) in a volumetric flask and bringing it to the appropriate volume 

with FSW at salinity 34 (for microalgae and crustacean assays) or FBW at salinity 6.87 

(for gastropod and fish assays). The stock solution was stored at room temperature in the 

dark (covered volumetric flask). Exposure concentrations of BPA were prepared by serial 

dilutions (i.e., reducing its concentration by a fixed factor) of the stock solution using 

FSW or FBW according to the test organism.  

  

2.3 Experimental design  

Acute toxicity of BPA was assessed after 24, 48, 72 and 96 h of exposure, 

according to internationally recognized guidelines - Standard Evaluation Procedure 

guidelines (US EPA, 1975; US EPA, 1985). Aquatic organisms were exposed to eight 

decreasing concentrations of BPA. In controlled experimental conditions at 25°C, the 

recovery rate from chromatographic analysis for determining BPA concentrations in 

seawater is higher than 90% (Ekonomou et al., 2019); thus, differences between nominal 

and detected concentrations are considered negligible in short-term assays. Moreover, 

since BPA degradation is not readily (>30 days) in seawater (Kang & Kondo, 2005) and 

marine sediments (half-life of 14.5 days; Ying & Kookana, 2003), BPA degradation was   

considered negligible in our short-term incubations (24-96 h). Negative controls were 
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performed by incubating the test organisms in FSW (microalga and crustacean) or FBW 

(gastropod and fish) without BPA. All the toxicity tests were carried out using sterilized 

glass laboratory supplies (e.g., bottles, tubes, flasks, pipettes) in a BOD incubator at 24 °C 

and a photoperiod of 12:12 h to simulate the environmental conditions. Moreover, 

preliminary tests were performed in order to set an appropriate range of BPA 

concentrations for acute assays.  

  

2.3.1 Primary producer microalga  

The microalga Tetraselmis sp. (1.5 x 105 total cells per replicate) were exposed to 

15 mL of BPA solutions (2.34, 4.69, 9.38, 18.75, 37.5, 75, 150 and 300 mg L-1) or FSW 

(negative controls) in glass culture tubes (23 mL). Three independent replicates of each 

BPA concentration and three replicates of negative control (without BPA) were 

performed. Homogenized aliquots of 2 mL were collected by experimental replicate and 

control using glass Pasteur pipette after 24, 48, 72 and 96 h of BPA exposure and then 

preserved in neutral lugol iodine solution. Microalga density was assessed by counting 

the lugol preserved cells on a Fuchs-Rosenthal counting chamber (three analytical 

replicates) using an inverted microscope (Primovert Zeiss). Finally, microalgal cell 

density was converted to growth rate (µ) according to the equation:  

µ (𝑑𝑎𝑦−1) = ( 𝐿𝑛 𝐷  𝐿𝑛 𝐷0)  

𝑡1  𝑡0 

where, D1 is the cell density at the time 1, D0 is the cell density at the beginning of 

incubation and t1-t0 is the exposure time interval evaluated in days.   

  

2.3.2 Zooplanktonic grazer  

Ten individuals of adult brine shrimp were placed in a glass Petri dish (90 x 15 

mm) with 15 mL of each BPA solution (2.34, 4.69, 9.38, 18.75, 37.5, 75, 150 and 300 mg 

L-1) or FSW (control). Experiments were performed using three replicates for each BPA 

concentration and three replicates for negative control (without BPA). Brine shrimp 

survival was monitored by counting the dead individuals after 24, 48, 72 and 96 h of BPA 

exposure using a stereomicroscope (Leica EZ4HD).  
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2.3.3 Deposit-feeder snail  

Previously to experimental incubations, adult snails were sorted by size (> 2.0 

mm) and their shells were gently washed with FBW to remove soft sediment particles. 

Ten individuals were placed in a glass Petri dish (90 x 15 mm) with 15 mL of each BPA 

solution (2.94, 3.67, 4.59, 5.73, 7.17, 8.96, 11.2 and 14 mg L-1) or FBW (negative 

control). Three true replicates were applied for each BPA concentration and three 

replicates for the negative control. Gastropod survival was monitored by the counting 

dead individuals after 24, 28, 72 and 96 h after BPA exposure using a stereomicroscope 

(Leica EZ4HD).  

  

2.3.4 Omnivorous fish  

Adult individuals were weighed using a precision balance (0.001 g) and sexed by 

gonopodium presence (i.e., male) or absence (i.e., female) before incubations. 

Experimental replicates consisted in the incubation of one male fish (𝑋̅ ±SD; 0.53 ± 0.11 g 

wet weight) into 500 mL glass container filled with 300 mL of BPA solution (2.94, 3.67, 

4.59, 5.73, 7.17, 8.96, 11.2 and 14 mg L-1) or FBW (negative control). Three true 

replicates were performed by each BPA concentration and negative control. Individuals 

were fed twice a day with flake fish (Alcon Guppy®) food per replicate; however, in 

order to reduce feed effect in assays, the flake fish food was administered in amounts 

enough to guarantee that all food has been consumed immediately and without leftovers 

(as proposed by Salomão et al., 2020). Fish mortality was visually monitored at each 

exposure time interval (24, 48, 72 and 96 h) by counting the dead individuals.   

  

2.4 Statistical analyses  

Growth rate and survival proportion (i.e., number of alive cells/individuals by the 

initial number at t0) was calculated by independent replicate for each exposure time. 

Arithmetic mean of independent replicates by BPA concentration and negative controls 

were used to calculate the cumulative percentage of growth inhibition (for microalga) or 

mortality (for invertebrates and vertebrate species). One-way analysis of variance 

(ANOVA) was carried out to evaluate the influence of BPA concentrations on microalga 

density or survival proportion of brine shrimp, gastropod and fish by the four exposure 

times (i.e., 24, 48, 72, and 96 h) independently (i.e., crossed factors). If necessary, data 

were transformed into square root (density data) or arcsine of square root (proportion 



26  

  

data) to conform the parametric test assumptions. Before the parametric analysis, Levene 

and Kolmogorov-Smirnov tests were applied to assess the homogeneity of variance and 

normality, respectively, of data distribution. Whenever parametric assumptions were not 

met, the non-parametric Kruskal-Wallis test was performed. Parametric and 

nonparametric tests were considered statistically significant if p ≤ 0.05. Statistical 

analyses were performed using the software Statistica 8.0 (StatSoft).  

 The EC50 or LC50 (i.e., the BPA concentration that gives half-maximal response) 

and 95% of confidence intervals (CI) were determined for 96 h of exposure using the 

algal density or survival data normalized to the average of the negative controls. A 

concentration-response curve (variable slope model) with the least squares fitting method 

was applied after log-transformation of x-axis values (BPA nominal concentrations) using 

the equation:   

Bottom + (Top − Bottom) 

 
𝑌 = 1 + 10(LogEC50−X) × Hill Slope  

where Top and Bottom are plateaus in mg L-1 unit. Results were accepted if 

concentrationresponse curves had a R² ≥ 0.75. Non-linear regressions and graphics were 

conducted using the software GraphPad Prism 8.02 (Graph Pad).  

Effective and lethal concentration values (EC50s and LC50s) obtained in the present 

study were integrated with acute toxicity data of BPA to estuarine and marine species 

available in the literature to derive the Species Sensitivity Distribution curve (SSD's) and 

estimate Hazard Concentration for 5% of the species (i.e., HC5 – safety value that protect 

95% of species from determined system) and the fraction affected (FA) at HC5 results. 

Data selection criteria from literature consisted in clearly reported EC/LC50s values for 

marine and estuarine species representative of the following groups: primary producer 

microalga, zooplanktonic grazer, deposit-feeder snail, and omnivorous fish. The SSD 

model was constructed by fitting cumulative probability distribution of a full set of 

toxicity data, as proposed by Posthuma et al. (2002). SSD was generated using the US 

Environmental Protection Agency (USEPA) spreadsheet (SSD Generator V1). HC5 and 

FA were estimated using the software ETX 2.2 (RIVM) based on environmental BPA 

concentrations in surface waters of estuaries (n= 158) and marine systems (n= 202) (data 

compiled by Wu & Seebacher, 2020).  
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3. Results   

The presence of BPA significantly affected microalgal growth and the survival of 

brine shrimps, gastropods and fish for all the exposure times tested - 24 h, 48 h, 72 h, and 

96 h. All the specific results are presented in the following subtopics.  

  

3.1 Primary producer microalga  

Density of the microalga Tetraselmis sp. was significantly reduced by BPA at all 

the exposure times tested: 24 h (ANOVA, F8,27= 9.05, p≤ 0.001), 48 h (ANOVA, F8,27= 

4.16, p= 0.006), 72 h (ANOVA, F8,27= 7.31, p≤ 0.001), 96 h (Kruskal-Wallis, H8,27= 

18.91, p= 0.015). Negative growth rates were found for Tetraselmis sp. throughout the 

exposure time tested, even for the lowest BPA concentration (2.34 mg L-1) (Fig. 1). A 

similar pattern in microalgal growth rate was found for treatments with the lower BPA 

concentrations (2.34, 4.69, 9.38 and 18.75 mg L-1). In these BPA treatments, the growth 

rate of Tetraselmis sp. was similarly affected after 24-48 h of incubation and a reduction 

in BPA toxic effects (i.e., increase in growth rates) was noticed after 72-96 h of exposure 

(Fig. 1A-B). In contrast, a more pronounced effect in microalgal growth was shown after 

48 h of exposure to 37.50 mg L-1 of BPA and the toxicity intensity was similar to those 

found at treatments with low BPA concentrations for the other incubation times tested 

(Fig. 1B). At the higher BPA concentrations (75, 150 and 300 mg L-1), a more severe 

effect in microalgal growth rate was evidenced after 24 h of exposure to the pollutant 

followed by a decreased tendency to growth inhibition from 48 to 96 h of incubation (Fig. 

1C).   
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Fig. 1: Growth rate (day-1) of the microalga Tetraselmis sp. after 24 h, 48 h, 72 h and 96 h 

of incubation with filtered seawater (control) and BPA solutions. (A) control, 2.34 and 

4.69 mg L-1; (B) 9.38, 18.75 and 37.50 mg L-1; (C) 75, 150 and 300 mg L-1. Data are 

presented as mean (n=3 per treatment and time).   

  

The higher percentage in growth inhibition (33.3-79.97%) was induced after 24 h 

of BPA exposure (Table 1) and a concentration-dependent effect was shown from 18.75 

to 300 mg L-1. In contrast, algal growth inhibition was more pronounced after 48 h of 

exposure (~ 42%) at treatment with BPA concentration of 4.69 mg L-1. A reduction in 
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BPA toxicity in growth rates of Tetraselmis sp. was observed after 48-72 h at treatments 

with higher concentrations, and after 72-96 h at treatments with medium to low BPA 

concentrations. Cumulative growth inhibition (%) showed great variability amongst BPA 

concentrations from 48 to 96 h of exposure. Both the lowest and highest tested 

concentrations (2.34 and 300 mg L-1, respectively) showed similar cumulative values 

after 96 h of BPA exposure (Table 1).   

  

Table 1. Cumulative growth inhibition (%) for the microalga Tetraselmis sp. exposed to  

BPA solutions and negative control.   

BPA  

  

(mg L-1)  

 Growth inhibition (%)   

24 h   48 h  72 h  96 h  

 0  -13.77*  37.50  11.88  -1.25*  

 2.34  51.23  66.85  72.08  71.25  

 4.69  33.73  75.60  52.50  43.13  

 9.38  49.57  69.95  55.63  100.00  

 18.75  33.30  51.85  36.88  59.17  

 37.50  47.47  93.67  44.58  60.42  

 75  74.13  64.35  57.29  73.96  

 150  62.47  67.5  51.25  42.29  

 300  79.97  73.75  87.92  75.21  

 
*negative values mean positive algal growth  
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3.2 Zooplanktonic grazer  

A significant decrease in the survival of the planktonic crustacean Artemia salina 

was evidenced at all the exposure times tested: 24 h (Kruskal-Wallis, H8.27 = 18.52, p= 

0.018), 48 h (Kruskal-Wallis, H8.27= 20.39, p= 0.009), 72h (Kruskal-Wallis, H8.27 = 19.25, 

p= 0.014), and 96 h (Kruskal-Wallis, H8.27= 18.01, p= 0.021). Moreover, time and 

concentration-dependent effect of BPA on A. salina mortality was detected (Table 2). 

There was a tendency to increase in toxicity with exposure time, as well as a significant 

increase in mortality at the two highest concentrations (i.e., 150 and 300 mg L-¹ BPA).  

  

Table 2. Cumulative mortality (%) of Artemia salina individuals exposed to BPA 

solutions.   

BPA   

  

(mg L-1)  

0  

 Cumulative mortality (%)  

24 h  48 h  72 h  96 h  

26.67  50.00  50.00  56.67  

2.34  26.67  33.33  36.67  46.67  

4.69  26.67  43.33  56.67  66.67  

9.38  10.00  20.00  26.67  33.33  

18.75  16.67  40.00  50.00  56.67  

37.5  20.00  33.33  46.67  56.67  

75  26.67  43.33  50.00  60.00  

150  46.67  83.33  96.67  100.00  

 
  

3.3 Deposit-feeder snail  

BPA exposure significantly affected the survival of the benthic snail H. australis 

at all tested times: 24 h (Kruskal-Wallis, H8,27 = 18.92, p= 0.015), 48 h (Kruskal-Wallis, 

H8,27 = 21.82, p= 0.005), 72 h (Kruskal-Wallis, H8,27 = 23.43, p= 0.003), and 96 h 

(KruskalWallis,.H8,27 = 23.61, p= 0.003). No death was recorded at negative controls and 

300   96.67   100.00   100.00   100.00   
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the lower tested BPA concentrations (i.e., 0.063, 0.125, 0.25, and 0.5 mg L-1) (Table 3). 

At the concentration of 7.17 mg BPA L-1, the same mortality percentage (30%) occurred 

at all exposure times (Table 3). No significant time effect on snail’s mortality was 

detected at BPA concentration of 1.0 mg L-1. However, time- and concentration-

dependent effects were shown in H. australis mortality at higher BPA concentrations (i.e., 

2.0 – 8.0 mg L-1) (Table 3).   

  

Table 3. Cumulative mortality (%) of Heleobia australis snails exposed to BPA 

concentrations.  

BPA  

  

(mg L-1)  

 Cumulative mortality (%)  

24 h  48 h  72 h  96 h  

0  0  0  0  0  

0.063  0  0  0  0  

0.125  0  0  0  0  

0.25  0  0  0  0  

0.50  0  0  0  0  

1.0  30.00  30.00  30.00  30.00  

2.0  10.00  13.33  20.00  30.00  

4.0  23.33  43.33  46.67  60.00  

8.0  66.67  73.33  93.33  100.00  

  

Moreover, H. australis snails presented excessive relaxation and numbness of the 

mantle before their death (e.g., 1-8 mg L-1) or as a sublethal response at concentrations 

that did not cause death (e.g., 0.125 mg L-1) during acute exposure.   

  

3.4 Omnivorous fish  

The survival of P. vivipara individuals was significantly affected by the exposure 

to BPA (Kruskal-Wallis, H8,27= 22.92, p= 0.0035). There was no fish mortality at the lower 

tested concentrations (2.94 – 7.17 mg BPA L-1) (Table 4). In addition, no time-effect of 
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BPA exposure was recorded for fish mortality (Table 4); thus, BPA concentration effect on 

individual’s survival was the same for all exposure times tested. Fish mortality was just 

recorded at BPA concentrations higher than 2.0 mg L-1 (Table 4) and the same mortality 

response (100%) was detected at the highest BPA concentrations (i.e., 4.0 and 8.0 mg L-1).   

Table 4. Cumulative mortality (%) of Poecilia vivipara individuals exposed to 

BPA  

concentrations.   

BPA  

  

(mg L-1)  

0  

 
Cumulative mortality (%)  

24 h  48 h  72 h  96 h  

0  0  0  0  

0.063  0  0  0  0  

0.125  0  0  0  0  

0.25  0  0  0  0  

0.50  0  0  0  0  

1.0  0  0  0  0  

2.0  66.67  66.67  66.67  66.67  

4.0  100.00  100.00  100.00  100.00  

8.0  100.00  100.00  100.00  100.00  

  

Abnormal behavior was detected in exposed fish just before its death at BPA 

concentrations of 2-8 mg L-1. Fish showed some signs of intoxication such as rapid gill 

movement, erratic swimming pattern, circular swimming, and swimming upside-down or 

in vertical position. No stress signal was detected in fish from control or exposed to 

nonlethal BPA concentrations (i.e., 0.063 – 1 mg L-1).    

  

3.5 BPA acute toxicity among trophic groups  

Only data obtained after 96 h of BPA exposure showed a proper fit to 

concentrationresponse curve for both invertebrates and vertebrate, allowing to compare 

BPA toxicity among the different trophic groups tested (Fig. 2). Except for the microalga 

Tetraselmis sp., LC50 values for invertebrates and vertebrate species were validated 
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according to validation criteria presented in section 2.4 (R² ≥ 0.75). Validated LC50 values 

obtained for tested organisms are presented in Table 5. For the microalga, a tendency of 

concentrationdependent effect in algal growth was shown after 24 h of exposure to BPA 

from 18.75 to 300 mg L-1; however, EC50 value did not meet validation criteria. For the 

other exposure times (48-96 h), algal growth data did not adjust to concentration-response 

model for the range of BPA concentrations tested. In general, microalgal growth was 

similarly affected by increasing BPA concentrations without a marked concentration-

response effect (Fig. 2).  

  

Table 5. Concentration-response LC50 (95% CI) results (mg L-1) after 96 h of BPA 

exposure for the tested organisms from distinct trophic groups. All the assays shown met 

the validation criteria.  

Trophic 

group  

Species  LC50 (mg 

L-1)  

Confidence 

intervals (95%)  

R²  

Filter feeder  Artemia salina  107.2  19.9 - 579.1  0.76  

Deposit feeder  Heleobia australis  11.5  2.9 - 44.9  0.90  

Omnivore  Poecilia vivipara  3.5  0.9 - 13.3  0.79  

  

Distinct species sensitivity to BPA has been found according to the trophic group 

evaluated (Table 5), in which a rank toxicity hierarchy was evidenced towards the species 

tested as follows:  microalga Tetraselmis sp.* < brine shrimp A. salina < gastropod H. 

australis < fish P. vivipara  

*Although microalgae EC50 were not validated, growth inhibition response was similar 

for entire BPA concentration range tested (2.94 - 300 mg L-1).  
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Fig. 2: Dose-response curves between BPA concentrations (Log-transformed) and growth 

or survival at 96 h exposure (normalized by controls) for each tested organism. A. 

primary producer microalga Tetraselmis sp.; B. filter feeder crustacean Artemia salina; C. 

deposit feeder mud snail Heleobia australis; D. omnivorous fish Poecilia vivipara.  
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The SSD curve assembled for estuarine and marine species exposed to BPA is 

presented in Fig. 3. Data obtained in the literature resulted in 14 values (Supplementary 

Material S1), consisting in eight different species, that were integrated with the three 

effective concentrations determined in the present study; thus, data from eleven different 

species (N) were included in SSD analysis. Compiled toxicity data of BPA showed a 

good adjustment and SSD curve presented high explicability value (R²= 0.968). However, 

considering the scarcity of BPA concentration effective data for marine and estuarine 

species with similar ecological traits, few species were representative of each trophic 

group (e.g., two species of microalga, five species of zooplankton grazer, one species of 

depositfeeder snail, and five species of omnivorous fish).   

The integrated EC/LC50 values ranged from 1.0 mg L-1 for the diatom Skeletonema 

costatum to 107.2 mg L-1 for the crustacean Artemia salina. No clear pattern of BPA 

sensitivity was evidenced among the different trophic groups evaluated (i.e., primary 

producer microalga, zooplanktonic grazer, deposit-feeder snail, and omnivorous fish). 

Artemia species were the most tolerant organisms, occupying the top of the curve. While 

the most sensitive species were represented by the microalga S. costatum and two guppy 

fish (P. reticulata and P. vivipara). The estimated HC5 value (i.e., the value that protects 

95% of the species) was of 1.18 (0.38-2.49) mg L-1, in which lower and upper values of 

fraction affected (FA) at HC5 results were 1.10 and 15.22.   

  
Fig. 3: SSD curve for acute toxicity of BPA (x-axis in Log10) with respect to estuarine 

and marine species. Individual points represent the acute EC/LC50 values discriminated by 

microalga (●), zooplanktonic grazer (■), deposit-feeder snail (♦) and omnivorous fish 
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(▲). Lines represent the central tendency (full line) and 95% confidence limits (dotted 

lines) results of the logistic regression on these data.   

  

4. Discussion  

The present study was designed to provide insights of BPA effects to tropical 

marine and estuarine organisms by evaluating its acute toxicity on representative species 

of different trophic groups: primary producer microalga, zooplanktonic grazer, 

depositfeeder snail, and omnivorous fish. Data of acute BPA toxicity to marine and 

estuarine biota barely known and, so far, is focused on few model species. Despite the 

limited available data of BPA effective concentration effects on marine and estuarine 

organisms, we have combined the available EC/LC50 values distinguished by trophic 

groups using an SSD analysis as a tool to rank species sensitivity and estimate HC5. To 

our knowledge, a similar approach integrating toxicity data of BPA for marine and 

estuarine species has not been done before. Specific topics of each tested group and the 

integrated toxicity comparison are discussed in the following subtopics.   

  

4.1 Primary producer microalga  

Growth inhibition of marine microalgae is one of the most used parameters (Van 

Wezel & van Vlaardingen, 2004) to assess toxicity of emerging pollutants, including the 

plastic-derived compounds (Casado et al., 2013; Besseling et al., 2014; Zhang et al., 

2012; Ben Ouada et al. 2018). In the present study, the exposure of Tetraselmis sp. to 

increasing BPA concentrations (2.34 – 300 mg L-1) have induced growth inhibition (i.e., 

negative growth rates) during short-term experiment (24-96 h). Acute exposure to BPA 

has inhibited the growth of many Chlorophyceae microalgae at different concentrations 

and exposure times. For example, significant reductions in microalgal growth were 

detected for Chlorella pyrenoidosa (24 h: 50 mg L-1; 48 h: 25 and 50 mg L-1; 72 h: 10-50 

mg L-1; and 96 h: 1-50 mg L-1) and Scenedesmus obliquus (24 h: 10-50 mg L-1; 48-96 h: 

25 and 50 mg L-1) (Zhang et al., 2012), and Picocystis sp. (24-144 h: 25-75 mg L-1) (Ben 

Ouada et al., 2018).  

In the present study, the higher intensity in growth inhibition of Tetraselmis sp. 

was induced after 24 h of exposure to BPA. A reduction in BPA toxic effects on 

microalgal growth were evidenced just after 48 h of exposure to higher concentrations 

(i.e., 75 and 300 mg L-1). Moreover, the same tendency was noticed after 72-96 h of 
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exposure to medium (i.e., 4.69-37.50 mg L-1) and low (i.e., 2.34 mg L-1) BPA 

concentrations. The reduction in BPA toxicity to Tetraselmis sp. growth with exposure 

time suggests a rapid decrease in the number of less resistant microalgal cells, mainly at 

higher concentrations, and a selection for more resistant cells which may contribute to 

increase the tolerance of this algal strain to BPA. A gradual decrease with time in BPA 

harmful effects on growth rate of microalgae at concentrations of 1-50 mg L-1 was already 

detected during chronic exposure (5-30 days) (Zhang et al., 2012).   

Despite the wide range of BPA concentrations tested (two orders of magnitude) in 

the present study, Tetraselmis sp. exhibited high variability in growth response. These 

results suggest the testing of other toxicity biomarkers to detect a concentration-

dependent response of Tetraselmis sp. BPA inhibitory effect on microalgal growth may 

be related to damages in many physiological processes, including photosynthesis. 

Parameters directly related to primary production have been already applied as proxies to 

assess BPA toxicity for microalgae, such as chlorophyll content and photosynthetic 

activity (Gattullo et al., 2012; Mao et al., 2018). Moreover, the disruption of 

photosynthesis process induced by growth inhibitors leads to excess production and 

accumulation of reactive oxygen species (ROS) (Sies, 1997); thus, antioxidant activity 

markers (e.g., lipid peroxidation, ascorbate peroxidase and catalase activity) can also be 

used as an indicator of BPA toxicity to primary producers (Ben Ouada et al., 2018). In 

addition, metabolic activity and cytoplasmic membrane potential were sensitive 

parameters for acute toxicity evaluation of emerging compounds related to personal care 

products on Tetraselmis suecica cells (Seoane et al., 2017), which makes them potential 

proxies to assess pollutants toxicities on Tetraselmis species.   

Tetraselmis sp. showed high tolerance to acute exposure (96 h) to BPA 

concentrations up to 300 mg L-1. High tolerance of other chlorophytes has already been 

demonstrated to BPA. For example, Monoraphidium braunii was just negatively affected 

at BPA concentration of 10 mg L-1 (Gattullo et al., 2012), whereas Picocystis sp. were 

affected at higher BPA concentrations (Ben Ouada et al., 2018). Both M. barunii and 

Picocystis sp. are proposed as promising species for the phytoremediation of waters 

contaminated with BPA. Thus, in the view of the great tolerance of Tetraselmis sp. 

detected for high concentrations of BPA, future studies should evaluate its ability as a 

BPA sequestrant in contaminated effluents before their arrival in marine systems.   
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4.2 Filter feeder invertebrate   

Acute exposure to BPA has induced time- and concentration-dependent responses 

of brine shrimps. An increase in the mortality of Artemia salina individuals was 

evidenced towards high BPA concentrations, as well as cumulative lethality effect 

throughout exposure time. Brine shrimps have been often used in toxicity studies 

(Kalčíková et al., 2012; Shaukat et al., 2014; Neves et al., 2017; Silva & Abessa, 2019), 

due to its relative sensitivity and easy maintenance (i.e., cultivation, short life cycle, 

resistance to manipulation). The sensitivity of Artemia nauplii and adults was already 

detected for different chemicals (e.g., organic solvents, industrial chemicals, inorganic 

compounds and metals) (Kalčíková et al., 2012), phenolic compounds (Shaukat et al., 

2014), harmful dinoflagellates (Neves et al., 2017), nanoparticles (Arulvasu et al., 2014; 

Kumar et al., 2017) and emerging contaminants (Castritsi-Catharios et al., 2013; Silva & 

Abessa, 2019).   In our assays, there was a slight tendency to a decrease in lethality 

intensity at treatments of intermediate BPA concentrations tested (i.e., 9.38-37.50 mg L-1) 

in comparison to lower (2.34-4.69 mg L-1) and higher (75-300 mg L-1) concentrations. 

This response is possibly a hormetic effect (i.e., overcompensation response to a 

disruption in homeostasis; Calabrese, 1999). The occurrence of hormetic concentration 

response was demonstrated for many organisms exposed to several chemicals and 

physical agents (reviewed in Calabrese & Blain, 2005). In addition, hormesis is a highly 

frequent phenomenon independently of tested stressor, biological endpoint, and 

experimental model system (e.g., microbe, plant, invertebrate and vertebrate) (reviewed 

in Calabrese & Baldwin, 2001). Hormesis is characterized as an evolutionary-base 

adaptive response to disruptions in organism homeostasis induced by an environmental 

stressor (reviewed in Calabrese & Baldwin, 2001), in which the response depends on 

organismal physiological system. Thus, it is not expected that a determined intensity of 

specific stressor (e.g., a chemical concentration) could induce similar hormetic responses 

in different biological systems. In the view of our results using lethality as endpoint, the 

acute exposure to BPA at concentrations of 9.38 to 37.50 mg L-1 only seemed to induce 

hormetic effect in A. salina individuals.   

In the present study, the LC50,96h value obtained for A. salina exposed to BPA was 

higher (i.e., lower sensitivity) than values previously found for Artemia species to the 

same emerging pollutant (Table 6). In contrast to previous studies, for the first time, we 

have assessed BPA toxicity in adult individuals of A. salina after 96 h of exposure using 
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mortality as endpoint. Evidenced differences in Artemia sensitivity (LC/EC50) among 

studies may be related to assay conditions (e.g., biological endpoint, exposure time, 

physical and chemical factors), life stages tested, variability in populational resistance 

and, possibly, interindividual variability. Sublethal indicators of toxicity have already 

been applied for Artemia as biological endpoints, such as dysfunctions in reproduction 

and growth (Hirano et al., 2004), alterations in swimming speed (Morgana et al., 2018), 

behavioral changes (Neves et al., 2017), immobilization (Kalčíková et al., 2012) and 

genotoxicity (Kim et al., 2019). Since some of the sublethal indicators seem to be useful 

to detect Artemia effects at low toxicant concentrations, these indicators could be applied 

in a complementary way or as an alternative endpoint for mortality assessment, mainly 

for subtle responses (i.e., all-or-nothing).  

  

Table 6. Acute toxicity of BPA to Artemia species.  

Species  Life stage  Endpoint  

Exposure  

(h)  

LC/EC50  

(mg L-1)  

Reference  

Artemia 

franciscana  
Nauplius  Mortality  

24  

48  

44.8  

34.7  

Castrits-Catharios et 

al., 2013  

Artemia sp.  Nauplius  Mortality  

24  

48  

74.77  

59.4  

Silva & Abessa 2019  

Artemia salina  Adult  Mortality  96  107.2  Present study  

 Artemia salina  Nauplius  Immobilization  24  56.1  Kalciková et al. 2012  
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4.3 Deposit feeder invertebrate   

In the present study, the non-conventional model gastropod Heleobia australis 

exposed to BPA exhibited mortality increase in a time- and concentration-dependent 

manner at the highest tested concentrations; except for the concentration of 1.0 mg L-1 in 

which 30% of snail’s mortality was shown for all exposure times. No snail mortality was 

observed for BPA concentrations of 0.063-0.5 mg L-1. Higher resistance to BPA was 

expected for H. australis that is known as a highly tolerant species under adverse 

conditions and several pollutants, such as hydrocarbons (e.g., petroleum and diesel) 

(Neves et al., 2011; Egres et al., 2012; Sandrini-Neto et al., 2016), salinity stress (Neves 

et al., 2011), and eutrophication (Neves et al., 2013a).   

Acute toxicity test of BPA to H. australis (LC50,96h = 11.5 mg L-1) was the first 

assessment for hydrobiid species, as well as for estuarine snails. This benthic species 

shares similar ecological traits with other hydrobiids (e.g., Hydrobia ulvae, Potamopyrgus 

antipodarum) (Fretter & Graham, 1994). Moreover, the sublethal responses (e.g., 

excessive relaxation and numbness) shown in the present study by H. australis snails at 

non-lethal concentrations or before snail’s death have never been described for snails 

exposed to BPA. These sublethal responses may be consequence of neurotoxic effects on 

snails. Other aquatic taxa (e.g., mollusc, ascidia, fish) have demonstrated disorders of 

nervous system through various cell signaling pathways induced by BPA exposure 

(Messinetti et al., 2019; Olsvik et al., 2019; Kim et al., 2020). Neurological disturbances 

caused by pollutants exposure in natural systems may decrease individual’s health status, 

negatively affect its survival and defense ability to predators and parasite infestation 

(Alda et al., 2011), leading to long-term alterations at population level.   

Among the invertebrates and considering their endocrine systems, prosobranch 

aquatic snails were proposed as test organisms for toxicity assessment of endocrine active 

compounds (Oehlmann et al., 2000; Duft et al., 2003, 2007). Previous studies have 

evaluated the chronic effects of xeno-estrogenic compounds (e.g., BPA) on hydrobiid 

snail’s reproduction (Duft et al., 2007; Sieratowicz et al., 2011). A stimulation in the 

number of embryos produced by P. antipodarum females was shown after two to eight 

weeks of BPA exposure (Duft et al., 2003, 2007; Sieratowicz et al., 2011). Moreover, the 

freshwater prosobranch snail Marisa cornuarietis chronically exposed to BPA have 

shown a syndrome referred as “superfemale” (i.e., formation of additional female organs), 

which resulted in higher female mortality and stimulation of oocyte and spawning mass 
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production (Oehlmann et al., 2000; Duft et al., 2007). Despite no previous assessment of 

chronic impacts of xeno-estrogenic compounds on H. australis, environmental impacts of 

xeno-androgen endocrine disruptors (e.g., tributyltin) was detected in female snails with 

the record of imposex (i.e., superimposition of male sexual characters) for the species 

(Neves et al., 2013b). Chronic reproductive impacts on hydrobiids at low BPA 

concentrations (e.g., EC50,2-8 weeks= 0.004 - 24.5 µg kg-1 dry sediment; Duft et al., 2003), 

as well as for other prosobranch snails, highlight the potential effects of environmentally 

relevant concentrations on snails from contaminated aquatic systems. Further studies 

focusing on acute toxicity tests with deposit-feeder snails and other macroinvertebrates 

are needed considering their functional importance in nutrient cycling and food webs of 

estuarine and marine systems. The mud snail H. australis was effective to assess BPA 

toxicity in acute assays, but its effectiveness as a tropical model species must be tested for 

chronic toxicity assessment at environmentally relevant BPA concentrations.  

  

4.4 Omnivorous vertebrate  

In the present study, acute exposure to BPA have induced Poecilia vivipara 

mortality in a concentration-dependent manner. However, all individuals exposed to low 

and intermediate BPA concentrations have survived (i.e., 0.063-1.0 mg L-1) and no 

timeeffect was detected in fish response. Similarly, acute lethality in the omnivorous fish 

Pimephales promelas was detected only at the higher BPA concentrations tested (e.g., 

5.613.3 mg L-1) without time-effect (Alexander et al., 1988). As evidenced in the present 

study, the fast-lethal response of fish may be explained by the hydrophobic nature of BPA 

that permits its readily transport to the cell cytoplasm of fish inducing chemical cellular 

damages (Fei et al., 2010). Previous studies have evidenced that BPA action mechanism 

seems to be efficient to induce histological injuries and changes in fish transcriptional 

response even after short-term exposure. Kim et al. (2018) have found that BPA exposure 

significantly upregulated mRNA expression of lipid metabolism and downregulated 

genes involved in several biochemical and physiological processes, as well as relevant 

genes for vertebrate immunity. In addition, acute BPA exposure may also alter dorso-

ventral patterning and brain development in fish during early embryogenesis (Tse et al., 

2020) and induce cellular injuries in liver and gills of adults (Asifa & Chitra, 2015).   

In the present study, alterations in fish behavior have been detected as an early 

stress response for BPA concentrations that induced lethality (i.e., 2-8 mg L-1), while no 
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behavioral change was detected in fish exposed to non-lethal BPA concentrations (i.e., 

0.0625-1 mg L-1). Most of the aberrant fish behavior shown was erratic swimming pattern 

(e.g., circular) and fish position (e.g., turned upside-down or in vertical position). Fish 

behavior has been applied as indicator of sublethal toxicity for several toxicant stressors 

(e.g., Little and Finger, 1990; Ajuzie, 2008; Cazenave et al., 2008; Neves et al., 2020; Qiu 

et al., 2020). Acute BPA exposure have also induced abnormal behavior in cichlid fish  

(Etroplus maculatus) that showed erratic activity followed by restricted movements and 

loss of equilibrium (Asifa & Chitra, 2015). A reduction in swimming performance of the 

zebrafish Danio rerio was also demonstrated after chronic exposure to BPA (Little & 

Seebacher, 2015). The action mechanism of xeno-estrogenic chemicals (e.g., bisphenols) 

affects estrogen receptors, such as the brain of adult teleost fish that exhibits intense 

activity and expression of estrogen receptors and steroidogenic enzymes (Diotel et al., 

2011). The rapid permeability of BPA in blood-brain barrier (e.g., 1-2 h at BPA 

concentration of 10 mg L-1) seemed to lead to several changes in neurochemical 

pathways, which induced acute effects on fish larvae such as impaired behavioral patterns 

(e.g., swimming distance and velocity, altered color-preference), reduced heart rate and 

developmental deformities (Kim et al., 2020). Therefore, in the present study, the aberrant 

behavior described for exposed P. vivipara individuals may be consequence of rapid 

neurological dose-dependent effects only induced by BPA concentrations that led to fish 

mortality.  

Several studies have evaluated chronic impacts of BPA on fish. Sublethal 

physiological responses were demonstrated for guppy fish, among them some alterations 

in male testicular structures (Kinnberg & Toft, 2003), changes in fish sex ratio, sperm 

quantity and quality, and reproductive success (Chen et al., 2015). Several other sublethal 

effects were described for teleost fish, which includes injuries in embryonic-larval 

development, higher incidence of morphological abnormalities, reduction in female body 

size, effects on blood flow, heart rate and muscles, cardiac edema, effects on hair cell 

survival and regeneration, alterations in gene expression, and disturbs in hormonal and 

molecular pathways (e.g., Duan et al., 2008; Chen et al., 2015; Hayashi et al., 2016; Little 

& Seebacher, 2015; Murata & Kang, 2018; Olsvik et al., 2019; Kim et al., 2020). 

Moreover, chronic exposure to environmentally relevant BPA concentrations may trigger 

fish avoidance behavior (Silva et al. 2018), changes in recognition memory and color 

preference (Li et al., 2017; Naderi et al., 2020), and adverse effects on population 

https://www.sciencedirect.com/science/article/pii/S026974911934895X?casa_token=uxafhnLngE0AAAAA:w4jJ7WPNcq_tFiG_TQYR0thk-ws2lZaC8SFPsXPeyPFhAii_bFFi-A8YvN-M7tfLcOKozJlQ2W4#bib15
https://www.sciencedirect.com/science/article/pii/S026974911934895X?casa_token=uxafhnLngE0AAAAA:w4jJ7WPNcq_tFiG_TQYR0thk-ws2lZaC8SFPsXPeyPFhAii_bFFi-A8YvN-M7tfLcOKozJlQ2W4#bib15
https://www.sciencedirect.com/science/article/pii/S026974911934895X?casa_token=uxafhnLngE0AAAAA:w4jJ7WPNcq_tFiG_TQYR0thk-ws2lZaC8SFPsXPeyPFhAii_bFFi-A8YvN-M7tfLcOKozJlQ2W4#bib15
https://www.sciencedirect.com/science/article/pii/S026974911934895X?casa_token=uxafhnLngE0AAAAA:w4jJ7WPNcq_tFiG_TQYR0thk-ws2lZaC8SFPsXPeyPFhAii_bFFi-A8YvN-M7tfLcOKozJlQ2W4#bib15
https://www.sciencedirect.com/science/article/pii/S026974911934895X?casa_token=uxafhnLngE0AAAAA:w4jJ7WPNcq_tFiG_TQYR0thk-ws2lZaC8SFPsXPeyPFhAii_bFFi-A8YvN-M7tfLcOKozJlQ2W4#bib15


43  

  

reproduction (e.g., changes in the percentage of ovulated females and ovulation period) 

(Lahnsteiner et al., 2005). Taking into account that deleterious effects of BPA on fish 

may be irreversible and strongly affect population structure and dynamics, the impacts of 

BPA at environmentally relevant concentration on marine and estuarine fish must be 

further assessed.   

Despite the wide application of guppy fish as a vertebrate model for acute toxicity 

tests (e.g., Yilmaz et al., 2004; Hafez et al., 2016; Vajargah et al., 2020), the LC50 value 

of BPA was obtained, for the first time, for P. vivipara. Our study is only the second 

acute toxicity test of BPA for a guppy fish (Poecilia reticulata LC50,72h= 1.66 mg L-1; 

Silva et al., 2018). Poecilia vivipara showed high sensitivity to BPA acute exposure, in 

which its LC50 value are within the lower values determined for teleost fish species of 

brackish and marine systems (e.g., 1.66 - 6.48 mg L-1; Asifa & Chitra, 2015; Silva et al., 

2018). The guppy P. vivipara has been applied in toxicity tests of several compounds 

(e.g., biocides, metals, personal care products) regarding its effectiveness as a sensitive 

model (Ferreira et al., 2012; Escarrone et al., 2016; Zebral et al., 2018; Lopes et al. 2020) 

and its neotropical distribution (Ferreira et al., 2012). This species is also a valuable 

model considering its tolerance to a wide range of salinity (i.e., euryhaline) and 

temperature (i.e., eurythermal) (Ferreira et al., 2012). Therefore, in the view of species 

traits and the present results, the guppy P. vivipara seems to be a promising model 

organism for the evaluation of BPA impacts on brackish-marine systems.  

  

4.5 BPA toxicity among trophic groups  

In the present study, marked differences in model organism’s sensitivities to BPA 

were detected. The primary producer microalga (Tetraselmis sp.) showed high tolerance 

to BPA, without a concentration-dependent response. Species sensitivity have increased 

from the zooplanktonic grazer (A. salina), followed by the deposit-feeder snail (H. 

australis), to the omnivorous fish (P. vivipara).  

Despite our experimental data could suggest a species sensitivity tendency 

towards distinct trophic levels, and partially supported our hypothesis (i.e., that BPA 

toxicity increases with the increase in trophic levels), the integration of BPA toxicity data 

using SSD analysis did not evidence a clear toxicity hierarchy for estuarine and marine 

species from different trophic levels. In addition, SSD curve have evidenced a great 

variability in species sensitivity within the groups tested, except for Artemia species that 
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showed the higher tolerance to BPA. Variability in species sensitivity within trophic 

groups seems to be related to interspecific responses, probably related to the action 

mechanism of BPA, in addition to assay conditions (e.g., possible differences in exposure 

time, physical and chemical factors among the studies). Considering the chemical 

compound nature (i.e., estrogenic endocrine disruptor) and endocrine system complexity 

of taxa tested, differences in the action mechanism of BPA and its toxicity are expected 

among species, even for organisms trophic and/or with taxonomically similar.  

SSD analysis methodology assumes that the acceptable effect level (i.e., 

sensitivity) of different species in the environment follows a probability function (Dowse 

et al., 2013). Considering the scarcity of BPA concentration effective data for marine and 

estuarine species of similar ecological traits, few species could be retrieved for each 

trophic group which may have affected a fully evaluation of species sensitivity among 

trophic position levels. Moreover, our results reinforce the assumption that a limited 

number of tested species is a random sample of the whole biological system (Posthuma et 

al., 2002), as well as the importance to assess acute and chronic toxicity of compounds 

(especially the emerging ones) for marine and estuarine species including the non-

conventional ones with ecological relevance at aquatic ecosystems.  

Although the LC50 values and estimated HC5 (1.18 mg L-1), with lower and upper 

values of FA from 1.10 to 15.22, for marine and estuarine species were higher than 

environmentally relevant concentrations (Deblond et al., 2011; Gavrilescu et al., 2015; 

Lima et al., 2017), sublethal adverse effects induced by BPA exposure may lead to 

unbalances in population levels. Evaluated species covered important groups for 

brackishmarine system functioning (i.e., primary producer and consumer, secondary 

consumer, and detritivore), therefore the impact of BPA on these key groups may have 

underlying and less perceptible ecological, commercial and human health impacts.  

  

5. Conclusion  

Differences in species sensitivities to BPA were detected, in which the primary producer 

microalga showed the highest tolerance (i.e., no concentration-dependent response), and 

species sensitivity have increased from the zooplanktonic grazer, followed by the 

depositfeeder snail, to the omnivorous fish. Despite the toxicity hierarchy towards distinct 

trophic levels evidenced by our assays, which partially supported the study hypothesis, 

the novel approach used to integrate BPA toxicity values (i.e., from the present study and 
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available in literature) using Species Sensitive Distribution (SSD) analysis did not 

evidence a clear pattern towards higher trophic groups. Model organisms tested in the 

present study were effective to assess BPA toxicity in acute assays and covered important 

groups for brackish- marine system functioning, therefore the impact of BPA on these key 

groups may have ecological, commercial and human health impacts.  
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Conclusões Gerais  

  

• Foram detectadas diferenças quanto a sensibilidade das espécies ao composto.  

• A microalga apresentou a maior tolerância entre os organismos testados, sem uma 

resposta dependente da concentração.  

• A sensibilidade das espécies aumentou do herbívoro zooplanctônico Artemia 

salina, seguido do gastrópode Heleobia australis, para o peixe Poecilia vivipara.  

• Apesar da hierarquia de toxicidade em relação aos níveis tróficos, a SSD não 

revelou um padrão entre os mesmos.  

• Organismos modelo testados no presente estudo foram eficazes para avaliar a 

toxicidade do BPA em ensaios agudos.  

• O impacto do BPA nesses grupos-chave pode acarretar em impactos ecológicos, 

comerciais e na saúde humana.  

   



61  

  

 

  

  


