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The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly
composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism.
Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol,
massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9
supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated
receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with
omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine
production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose
tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed
postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is
associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines
TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone
levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased
by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue
PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating
leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR
gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection
can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
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1. Introduction

Sepsis is a cause of morbidity and mortality in intensive
care units and associated with increased hospital-related
costs [1, 2]. According to the Third International Consen-
sus definitions, sepsis is a life-threatening organ dysfunc-
tion caused by unbalanced host response to infection [3].

Different strategies for the treatment of sepsis have
emerged in the last few years, but none of them has proven
to be beneficial in clinical trials [4]. Lipids can modulate leu-
kocyte function and therefore the immune response [5]. The
Mediterranean diet, characterized by high ingestion of olive
oil, is associated to a reduction in the mortality of vascular
diseases and cancer [6–8]. Oleic acid, a ω-9 monounsaturated
fatty acid, is the main constituent of olive oil [9, 10]. We have
previously shown that mice fed with chow rich in olive oil
had increased survival rates, decreased neutrophil accumula-
tion, lowered plasma TNF-α, prostaglandin E2, and leukotri-
ene B4 levels in the peritoneal cavity after LPS-induced
endotoxic shock [11].

Omega-9 is a natural agonist of peroxisome proliferator-
activated receptor (PPAR) [12]. Three PPAR isotypes were
described so far: PPAR alpha, PPAR gamma, and PPAR
delta/beta. PPARs modulate metabolism, inflammation, and
infection [13–15]. PPAR gamma ligands had been demon-
strated to protect septic animals against microvascular dys-
function [16] and enhance bacterial elimination through
neutrophil extracellular trap formation [17]. Furthermore,
we showed that omega-9 decreased nonesterified fatty acids
in mice after enteric injection [18] and pretreatment with
omega-9 improved lipid metabolism acting on PPAR target
genes with increasing survival of septic mice [19].

Here, we investigated the effect of omega-9 on systemic
corticosterone levels, inflammatory markers, cell migration,
bacterial clearance, and nuclear receptor PPAR gamma
expression in both liver and adipose tissues during experi-
mental sepsis. We also studied omega-9 effects on leukocyte
rolling in vivo.

2. Materials and Methods

2.1. Animals. Male Swiss mice weighing between 18 and 20 g
were obtained from FIOCRUZ (Rio de Janeiro, Brazil) and
were purchased from Janvier Lab (Saint Berthevin, France).
The animals were accommodated in a room at 22°C, with free
access to water and food and alternating light/dark cycle of
12 h. All experiments were approved by the Oswaldo Cruz
Foundation Animal Welfare Committee under license
number LW-36/10 and L-015/2015 and by the Regierung
von Oberbayern, 002-08. The weight of the animals was mea-
sured on days 1, 7, and 14, and the food intake was quantified
for each cage. We divided the amount of chow that was con-
sumed by the number of animals in each cage, and then, we
estimate the food intake per animal.

2.2. Omega-9 or Palmitic Acid Treatment. Mice were given a
daily dose of omega-9 (oleic acid, 18 : 1 (n-9), Sigma) or pal-
mitic acid (16 : 0, Sigma) for 14 days before CLP. For the
intravital microscopy experiments, the animals received
omega-9 for 8 days. We prepared oleate solution by water

addition according to previous works [20–22]. Briefly, we
added NaOH to reach pH12.0 and sonicated; after oleate sol-
ubilization, we adjusted the pH to 7.6 with HCl. We gave by
gavage 0.28mg of omega-9 (100μL) or 0.26mg of palmitic
acid (100μL) per day. Control mice received 100μL of saline.

2.3. Cecal Ligation and Puncture (CLP). Mice received
omega-9 or saline for 14 days orally. On the 15th day, we
induced polymicrobial sepsis by CLP, as we previously
described [19]. Briefly, we anesthetized mice through intra-
peritoneal injection of ketamine (100mg/kg) (Cristália) and
xylazine (10mg/kg) (Syntec). We made an incision through
the linea alba; the cecum was exposed, ligated with sterile
3-0 silk, and perforated through and through twice with
an 18 gauge needle. We extruded a small amount of fecal
material through the hole, and the cecum was softly
pushed into the abdomen. We sutured the area with nylon
3-0 (Shalon) in two layers. All mice received 1mL of ster-
ile 0.9% saline subcutaneously. For 24 h experiments, six
hours after CLP, we treated mice with antibiotic imipenem
(10mg/kg) intraperitoneally. We submitted sham mice to
the same procedures described above, but the cecum was
not ligated nor punctured.

2.4. Peritoneal Lavage. Mice were submitted to euthanasia
with isoflurane (Cristália) 6 h or 24h after surgery. The
peritoneal cavity was washed with saline (3mL) under sterile
conditions. Aliquots from the peritoneal washes were plated
in tryptic soy for count of colony forming units (CFU) and
used for total cell count in Turk solution (2% acetic acid),
in Neubauer chambers. Differential leukocyte count was
done in cytocentrifuged smears stained with panoptic
(Laborclin). The remaining peritoneal wash was centrifuged,
and the supernatant was collected and stored at −20°C for
further cytokine quantification. We also counted total leuko-
cytes in blood samples taken from a tail vein and analyzed
differential leukocyte counts in blood smears.

2.5. Cytokine Analysis. TNF-α, IL-10, and IL-1β were
detected by enzyme-linked immunosorbent assay (ELISA,
DuoSet kit, R&D systems, Minneapolis, MN, USA) accord-
ing to the instructions of the manufacturer.

2.6. Western Blot Analysis. Detection of PPAR gamma was
performed as previously described [22] with minor modifica-
tions. Briefly, we perfused organs with 20mM ethylenedi-
aminetetraacetic acid (EDTA) pH7.4. We cut liver tissues
into small pieces and mixed with lysis buffer (with a cocktail
of protease inhibitors) at 4°C in (Complete, Roche AG, Basel,
Switzerland). We lysed periepididymal adipose tissues at 4°C
in RIPA buffer with protease inhibitors (Roche AG, Basel,
Switzerland) and phosphatase inhibitor cocktail (Roche).
We stored tissues at −20°C for further protein quantification
by BCA. Western blot analysis was done with whole liver
and adipose tissue lysates (40μg of proteins) using anti-
PPAR gamma (1 : 1000, Santa Cruz) and anti-β-actin
(1 : 15000 dilution, Sigma), and detection was performed
with the “SuperSignal Chemiluminescence” kit (Pierce),
after exposing the membrane to an autoradiograph film
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(GE Healthcare). Bands were digitalized and quantified by
the ImageMaster 2D Elite program.

2.7. Corticosterone Levels. Animals were euthanized using an
overdose of isoflurane (Cristália), during the nadir (08:00 h)
of the circadian rhythm [23, 24], and blood was straightway
collected through cardiac puncture with saline with heparin
(400U/mL). Plasma was obtained after sample centrifuga-
tion for 10min at 1000×g and stored at −20°C until use.
Corticosterone plasma levels were evaluated using radioim-
munoassay (MP Biomedicals, Solon, OH, USA) following
the guidelines of the manufacturer.

2.8. Intravital Microscopy of the Cremaster Muscle. Intravital
microscopy of the mouse cremaster muscle postcapillary
venules was used to study leukocyte rolling under different
inflammatory conditions as previously described [25].
Briefly, we anesthetized the animals with intraperitoneal
injection of ketamine (125mg/kg, Ketanest®, Pfizer GmbH,
Karlsruhe, Germany) and xylazine (12.5mg/kg; Rompun®,
Bayer, Leverkusen, Germany). Afterward, they were trans-
ferred the animals to a heating pad to keep temperature at
37°C. After surgical insertion of a tracheal tube, the carotid
artery was cannulated to take the blood sample and for
systemic application of antibodies. We used the P-selectin-
blocking mAb RB40.34 and the E-selectin-blocking mAb
9A9 which were generous gifts from Dietmar Vestweber
(MPI Münster) and Barry Wolitzky (MitoKor, San Diego),
respectively. The scrotum was surgically opened, to exterior-
ize the cremaster muscle. After longitudinal incision and
distribution of the muscle over a cover glass, the cremaster
muscle was superfused with 35°C bicarbonate-buffered
saline. We observed cremaster muscle postcapillary venules
via an upright microscope (Olympus BX51) with an objec-
tive (×40/0.8 NA). We measured venular centerline red
blood cell velocity during the experiment via an online
cross-correlation program (CircuSoft Instrumentation,
Hockessin, Delaware, USA). We recorded the experiments
via a CCD camera system (model CF8/1; Kappa, Gleichen,
Germany) on a Panasonic S-VHS recorder and performed
offline the analysis of experiments using the used videotapes.
We measured diameter and segment length of postcapillary
venules using a digital image processing system [26]. Post-
capillary venules were recorded to calculate rolling flux
fraction (percentage of rolling leukocytes relative to the
number of leukocytes passing the vessel). Leukocytes with
a displacement of >15μm were tracked by using ImageJ
(National Institutes of Health, Bethesda, MD). In some
experiments, TNF-α (500 ng) was injected intrascrotally
2.5 h before intravital imaging.

2.9. Intravital Microscopy of Brain Microcirculation. The
cerebral microcirculation in mice was assessed as previously
described [16]. Briefly, we anesthetized the animals with
ketamine (75mg/kg, i.p.) and xylazine (10mg/kg, i.p.) and
fixed in a stereotaxic frame. Then, the left parietal bone was
exposed by a midline skin incision; a cranial window overly-
ing the right parietal bone (1–5mm lateral, between the
coronal suture and the lambdoid suture) was created with a

high-speed drill, and the dura mater and the arachnoid mem-
branes were excised and withdrawn to expose the cerebral
microcirculation. The cranial window was suffused with arti-
ficial cerebrospinal fluid (in mmol: KCl, 2.95; NaCl, 132,
CaCl2, 1.71; MgCl2, 0.64; NaHCO3, 24.6; dextrose, 3.71; and
urea, 6.7; at 37°C, pH7.4). Animals were then placed under
an upright fixed-stage intravital microscope equipped with
a LED lamp (Zeiss, model Axio Scope) coupled to a Zeiss
Axiocam and processed using ZEN software (Zeiss). Water
immersion objective 20x were used in the experiments and
produced total magnifications of 200x.

The visualization of brain microvascular surface was
facilitated by intravenous administration of 0.1mL 2% fluo-
rescein isothiocyanate- (FITC-) labeled dextran (molecular
weight 150,000) and by epi-illumination at 460–490nm
using a 520 nm emission filter. Leukocytes were labeled using
the fluorescent dye rhodamine 6G (0.3mg/kg) and visualized
by epi-illumination at 536–556nm excitation using a 615nm
emission wavelength. Analysis of leukocyte-endothelium
interactions was carried out by analyzing four randomly
selected venular segments (30 to 100mm in diameter) in
each preparation. Rolling leukocytes were counted as the
number of cells crossing the venular segment at speed less
than the red blood cells for 1 minute. Adherent leukocytes
were defined as the total number of leukocytes that were
firmly attached to the endothelium and did not change posi-
tion during 1 minute of observation and expressed as a num-
ber of cells/mm2/100μm.

2.10. Statistical Analysis. Results were analyzed by “one-way”
ANOVA followed by Newman-Keuls using GraphPad
Prism 5.0. Values of p < 0 05 were considered significant.
Data are presented as mean± SEM or individual values
with a median.
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Figure 1: Omega-9 decreased cortisol levels in septic mouse plasma.
Animals were treated with omega-9 for 14 days. On the 15th day,
CLP was performed, and 24 h after, the plasma was collected for
the quantification corticosterone. Each bar represents the
mean ± SEM of at least 7 animals. ∗ and + p < 0 05 compared to
sham and sham+ omega-9, respectively, and # compared to CLP.
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3. Results

3.1. Omega-9 Treatment Decreased Corticosterone Serum
Levels in Septic Mice. We previously demonstrated that
omega-9 treatment increased survival and ameliorated
clinical scores after CLP-induced sepsis [19]. In the present
work, we continue to investigate the mechanisms behind
the protective effects of omega-9.

High cortisol levels (a 10-fold increase compared to
health voluntaries) [27] are linked to disease severity and
hyperinflammation during sepsis. Here, we observed high
levels of corticosterone in septic mice. Omega-9 treatment
prevented the increase in plasma corticosterone levels
(Figure 1), reinforcing our previous data where omega-9
pretreatment decreased biochemical markers of organ
dysfunction [19].

3.2. Omega-9 Reduced IL-1β and TNF-α and Increased IL-10
Production in Septic Mice. Monocytes and neutrophils

produce IL-1β, tumor necrosis factor-α (TNF-α), and IL-
10, cytokines constituting the storm during sepsis [27–29].
Septic mice had higher levels of TNF-α, IL-β, and IL-10 in
the peritoneal lavage compared to the control
(Figures 2(a)–2(c)) while omega-9 pretreatment strongly
decreased the levels of TNF-α (Figure 2(a)) and IL-1β
(Figure 2(b)) in septic mice. Interestingly, IL-10 increased
in the peritoneal lavage of septic mice receiving omega-9
(Figure 2(c)).

3.3. Omega-9 Decreased Neutrophil Migration in the
Peritoneum of Septic Mice. One of the main steps of the
immune response during inflammation is the recruitment of
myeloid cells into inflamed tissue. We evaluated the effect of
omega-9 pretreatment on cell migration and accumulation
into the peritoneal cavity of septic mice. Septic mice
presented higher leukocyte numbers in the peritoneal cavity,
characterized by an increase in neutrophil numbers when
compared to sham animals in both time points analyzed, 6h
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Figure 2: Omega-9 reduced proinflammatory cytokines but increases the level of the anti-inflammatory cytokine IL-10 in the peritoneal
lavage of mice submitted to CLP. Animals were treated with omega-9 for 14 days. On the 15th day, CLP was performed, and 24 h after, the
peritoneal lavage was collected for the quantification of TNF-α (a), IL-1β (b), and IL-10 (c). Each bar represents the mean ± SEM of at
least 7 animals. ∗ and + p < 0 05 compared to sham and sham+omega-9, respectively, and # compared to CLP.
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and 24h after CLP (Figures 3(a) and 3(c)). Neutrophil accu-
mulation in the peritoneal cavity was reduced in septic mice
treated with omega-9 only 24h after CLP (Figure 3(c)), show-
ing no significant effect at an earlier time point (Figure 3(a)).

3.4. Omega-9 Impaired Leukocyte Rolling in Inflamed
Microvessels In Vivo. To analyze the role of omega-9 in leu-
kocyte rolling in vivo, we used intravital microscopy in surgi-
cally prepared mouse cremaster muscle postcapillary venules
[30, 31]. Leukocyte rolling is induced by the surgery of the
cremaster and is exclusively dependent on P-selectin
(<45min after surgery) [32–35]. We showed a decrease in
rolling in omega-9-treated mice compared to the control
(Figure 4(a) and Supplemental Movies 2 and 1, respectively).
Systemic injection of P-selectin-blocking antibody RB40.34
abolished leukocyte rolling (Figure 4(a)) endorsing the
dependence of P-selectin on rolling in the trauma model.
Next, we used TNF-α stimulation of the mouse cremaster
muscle in Swiss mice pretreated with omega-9 to study
leukocyte rolling. In TNF-α-stimulated mice, leukocyte rolling

is P- and E-selectin dependent [35]. We found that rolling flux
fraction was significantly diminished in omega-9-treated ani-
mals compared to that in controls (Figure 4(b)). There was
no alteration in neutrophil blood counts comparing omega-
9-treated and untreated animals (data not shown). Microvas-
cular injection of anti-P-selectin and anti-E-selectin-blocking
antibodies Rb40.34 and 9A9, respectively, abolished rolling
completely demonstrating that rolling in this model is indeed
dependent on P- and E-selectins, as shown previously [35].
Hemodynamic conditions were alike between the different
treatment groups (Supplemental Table 1).

3.5. Omega-9 Impaired Leukocyte Rolling in Septic Mice.
Figure 5 illustrates the leukocyte-endothelium interaction in
cerebral venules of mice subjected to sham or CLP with
(omega-9+CLP) or without (CLP) omega-9 treatment. Roll-
ing leukocytes in the CLP group were significantly increased
when compared to the sham group. Pretreatment with
omega-9 significantly attenuated the CLP-induced leukocyte
rolling in the cerebral microcirculation compared with the
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Figure 3: Omega-9 reduced leukocyte migration to the peritoneal cavity in septic mice. Animals were treated with omega-9 for 14 days. On
the 15th day, CLP was performed; 6 h and 24 h after, the peritoneal lavage was collected for the leukocyte counts. Counts of peritoneal
neutrophils (a) and systemic neutrophils (b) 6 h after CLP and counts of peritoneal neutrophils (c) and systemic neutrophils (d). Control
groups received the same volume of saline. Results are mean± SEM from at least 7 animals. ∗ and + p < 0 05 compared to sham and
sham+omega-9, respectively, and # compared to CLP.
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CLP-untreated group. Omega-9 pretreatment did not induce
any effect in cerebral venules of sham mice.

3.6. Omega-9 Increased Bacterial Killing in the Mouse
Peritoneal Cavity after CLP. Because omega-9 treatment
modulated cytokine response and neutrophil accumulation
in the peritoneal cavity, we decided to evaluate the impact
of omega-9 treatment on the bacterial load after CLP. We
observed that despite decreasing neutrophil accumulation
in the peritoneal cavity, omega-9 pretreatment did not

impair the bacterial elimination by the innate immune
response. To our surprise, omega-9 pretreatment increased
bacterial clearance in the peritoneum (Figure 6).

3.7. Omega-9 Restored PPAR Gamma Expression in the Liver
and Adipose Tissue in Septic Mice.Omega-9 is a PPAR ligand
and the treatment displayed an anti-inflammatory profile, so
we investigate the levels of PPAR gamma in the liver and adi-
pose tissues. We confirmed the reduction of PPAR gamma
expression in both liver and adipose tissues from septic mice.
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Figure 4: Omega-9 reduced rolling flux fraction in cremaster in trauma and TNF models. We treated the animals with omega-9 for 8 days
prior to the experiments. On the day 9, we analyzed rolling in postcapillary venules of mouse cremaster muscle in two models: trauma (a) and
TNF (b) models. We also treated animals of the traumamodel with anti-P-selectin and of the TNFmodel with anti-P- and E-selectins. Rolling
flux fraction was analyzed. Each bar is mean from at least 5 animals. ∗ and + p < 0 05 compared to sham and sham+ omega-9, respectively,
and # compared to CLP.
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Figure 5: Omega-9 reduced leukocyte rolling in mice submitted to CLP. Fluorescent intravital microscopy images showing leukocyte-
endothelium interaction in the cerebral postcapillary venules after 24 h of sepsis in mice (a). Animals were treated with vehicle (CLP) or
omega-9 (omega-9 +CLP) compared to sham operated pretreated with vehicle (sham) or omega-9 (omega-9 + sham) mice. Rolling of
leukocytes in the microvasculature was expressed as number of cells per minute (b). Data indicate mean± SEM, 5 mice per group. ∗p <
0 001 versus the sham group; #p < 0 05 versus the CLP group.
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In contrast, omega-9-pretreated animals maintained PPAR
gamma expression levels similar to sham mice in the liver
(Figure 7), and it was even higher in adipose tissue (Figure 8).

4. Discussion

Mortality from sepsis varies from 30 to 50%, and incidences
are rising due to a rising elderly population and an increased
number of patients with immunosuppression [36–39]. The
number of patients with sepsis rose from 387,330 to 1.1
million from 1996 to 2011 and probably will reach 2 million
by 2020 in the US [40]. Sepsis mortality is similar to heart
attacks and exceeds stroke deaths. Therapeutic procedures
are urgently needed [41]. Hence, infections leading to
damage in the microcirculation can compromise the multiple
organ function, including the lungs, heart, liver, gut, kidneys,
and brain, causing hypotension and myocardial dysfunction,

microvascular leak, thrombocytopenia, disseminated intra-
vascular coagulation (DIC), acute respiratory distress syn-
drome (ARDS), acute kidney injury (AKI), and acute brain
injury [42–45].

Therapies with anti-Toll-like receptor 4, anti-TNF-α,
and activated protein C failed in clinical trials, requiring
a rethinking of sepsis pathophysiology [29, 46–51]. Food
intake can influence the immune response [52–57]. The
Mediterranean diet, composed of olive oil as the main
source of fat, is an example of how lipids can influence
the inflammatory response [7, 58]. This diet has been linked
with a reduced risk of cancer and vascular illnesses and also
with a decreased chronic disease incidence, such as Parkin-
son [6, 8, 59]. Omega-9 is a monounsaturated fatty acid,
the main olive oil component [9, 10]. Omega-9 protects
from insulin resistance and prevents endothelial dysfunc-
tion in response to proinflammatory signals. Omega-9 also
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Figure 6: Omega-9 improved bacterial clearance in Swiss mice submitted to CLP. Animals were treated with omega-9 for 14 days. On the 15th

day, CLP was performed, and 6 h (b) and 24 h (c) after, the peritoneal lavage was collected and plated on TSA-coated plates for CFU counts.
Results are represented as individual values and median from at least 7 animals. In (a), there are representative photos of the exposed graph
(c). ∗ and + compared to sham and sham+omega-9, respectively, and # compared to CLP.
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reduces vascular smooth muscle cell proliferation and apo-
ptosis, suggesting a beneficial role in atherosclerosis [60].
Furthermore, omega-9 decreases the release of cytokines,
increases the killing ability of neutrophils, and improves
bacterial elimination [61].

We previously have shown that omega-9 prevents organ
dysfunction and increases survival during sepsis [19]. Some
reports associated kidney and liver dysfunction during sepsis
with an increase in plasma cortisol levels and decreased abil-
ity to metabolize cortisol. Both the adrenal gland activation
to produce glucocorticoid and catecholamine and the dimin-
ished ability to break down cortisol by suppressed expression
and impaired cortisol-metabolizing enzyme activity are char-
acteristic of host innate reaction to aggression [62, 63]. Here,
we showed that septic animals had increased corticosterone
plasma levels which could be decreased by omega-9 treat-
ment. We suggest that omega-9 protective effect on organ
dysfunction may be at least partially related to its effect on
normalizing corticosterone levels in our animal model.

Neutrophils are the highest leukocyte population in the
blood of humans (50–70% of leukocytes). They can be
quickly mobilized from bone marrow into the circulation
after immune activation and physical exercise or caused by
the release of corticoids and adrenaline [64]. Reservoir
organs may contribute to fast mobilization during inflamma-
tory processes. Recruitment of neutrophil to the inflamma-
tory site is a process that comprehends tethering, rolling,
adhesion, crawling, and extravasation. A spatial and tempo-
ral expression and adhesion molecule interaction on neutro-
phils (i.e., L-selectin, PSGL-1, LFA-1, and Mac-1) and their
ligands on endothelial cells (i.e., E- and P-selectin, and
ICAM-I) are crucial for effective extravasation of neutrophils
into the tissues [65]. Negatively modulating the expression of

these adhesion molecules, in turn, will influence leukocyte
migration into the inflamed tissue.

Ingestion of the monounsaturated fatty acid-rich diet
decreased the expression of ICAM-I [66]. Human embryonic
endothelial cells (HUVECs) treated with omega-9 had
diminished expression of LPS-stimulated VCAM-I, E-selec-
tin, and ICAM-I [67]. Mice fed with chow rich in olive oil
decreased neutrophil accumulation in the peritoneal cavity
24 h after LPS injection [11]. Our data add to this as they
showed a decrease of neutrophil influx into the peritoneum
in omega-9-treated animals, preventing exacerbated inflam-
mation. Interestingly, just the treatment with unsaturated
fatty acid was effective in controlling neutrophil influx,
because supplementation with a saturated fatty acid palmitic
acid did not affect neutrophil accumulation in septic mice
(Supplemental Figure 1). Using the trauma model, where
rolling depends on P-selectin, omega-9-treated animals
showed a decrease in rolling that could be confirmed in the
TNF model suggesting that omega-9 regulates selectin-
dependent rolling in vivo. Omega-9 effect reducing leukocyte
rolling extended to septic animals. In the sepsis model,
omega-9 was also very effective in inhibiting rolling of leuko-
cytes on endothelial cells of septic mice.

Neutrophils fight and destroy invading microorganisms
by diverse mechanisms such as phagocytosis, production of
ROS, and formation of neutrophil extracellular trap (NET)
[68]. Neutrophils produce proinflammatory cytokines and
release nitric oxide and ROS [69], and the excess of these
mediators can increase vascular permeability leading to
organ damage [70, 71]. By attenuating the accumulation of
neutrophils in the peritoneum, there is a decrease in organ
damage caused by the excessive overactivated neutrophil
numbers. Interestingly, we also detected increased bacterial
clearance in the peritoneal lavage in omega-9-treated septic
animals. Similar results have been obtained recently by our
group using low dose dasatinib treatment in septic mice
[72]. Neutrophils increase their ability to produce ROS after
treatment with omega-9 [73]. Supplementation for only 5
days is enough for omega-9 to incorporate into neutrophil
membranes [74]. Also, omega-9 enhanced phagocytosis by
neutrophils 30min after incubation and improved the micro-
organism elimination in vitro [75]. These effects are not
achieved using omega 3 or 6 [65]. Our results showed that
omega-9 was effective in increasing the bacterial elimination
by the host during sepsis. Intake of omega-3 daily for 14 days
alters gut flora decreasing species diversity, but several
butyrate-producing bacteria increased [76]. Similarly, a
decrease in Faecalibacterium, often linked to an increase in
the Bacteroidetes and butyrate-producing bacteria belonging
to the Lachnospiraceae, has been observed following omega-
3 supplementation [77]. Accordingly, a study suggests that
PUFA supplementation improves gut function and micro-
biome composition [78]. Concerning infection models, neu-
trophils treated with omega-3 showed enhanced antiparasitic
activity against Plasmodium falciparum [79] and dietary
omega-3 decreased bacterial load and increased the survival
rate in septic mice [80]. In our sepsis model, it is possible that
although there were fewer neutrophils in the peritoneum,
they are still able to fight the infection efficiently, actively
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Figure 7: Omega-9 treatment restored the expression of PPAR
gamma in the liver of CLP mice. Animals were treated with
omega-9 for 14 days. On the 15th day, CLP was performed, and
liver was removed from animals 24 h after CLP. Graphics in this
figure represent the rate between densitometric analyses of PPAR
gamma and β-actin bands. ∗ and + p < 0 05 compared to sham
and sham+omega-9, respectively, and # compared to CLP.
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killing bacteria without causing excessive tissue damage.
Omega-9 just prevented excessive neutrophil influx, because
it did not affect early neutrophil migration to the peritoneal
cavity but inhibited exacerbated neutrophil influx 24 h after
CLP. CFU counts corroborate because bacterial elimina-
tion was effective even in earlier time point in omega-9-
treated septic animals. We do not exclude the macrophage
role on bacterial killing. So far, our data only allow us to
conclude that omega-9 has not altered mononuclear cell
counts (data not shown).

Omega-9 can bind to PPAR, known as lipid sensors [12].
PPAR are ligand-activated transcription factors with an
important role in the inflammation and lipid and glucose
metabolism [13, 14]. PPAR gamma activation diminished
inflammatory response, increased survival, and attenuated
neutrophil migration in different models of inflammation
[81–84]. Moreover, we have shown that mice fed with
omega-9 and submitted to sepsis produced less proinflam-
matory cytokines and more IL-10, which agrees with studies
showing the activation of PPAR gamma-enhanced produc-
tion of the anti-inflammatory cytokine IL-10 [17, 85, 86].
We showed that PPAR gamma decreases rolling and adhe-
sion in brain microcirculation of septic mice [16].
Literature shows endothelial PPAR gamma downregulates
P-selectin expression decreasing leukocyte-endothelial inter-
actions [87]. Omega-9 binding to PPAR gamma may modu-
late P-selectin expression on leukocytes, decreasing their
ability to roll. PPAR also increases bacterial elimination. Lack
of PPAR alpha is linked with a high bacterial load in septic
mice [88]. We showed that PPAR gamma rosiglitazone leads
to increased bacterial clearance in septic mice. Leukocytes
from PPAR gamma agonist-treated septic animals are acti-
vated; they increased intracellular ROS and increased the
capacity of killing bacteria by NET formation [17].

PPAR gamma expression is decreased in many organs
like lung, liver, and adipose tissue during endotoxemia and

sepsis [81, 89]. Interestingly, endotoxin decreased PPAR
gamma through the increase of TNF release [90]. Based on
the findings by Zhou et al. and our own results, we suggested
the correlation between TNF production and decreased
PPAR gamma expression. Studies with phytochemical
curcumin have related its anti-inflammatory potential and
mortality protection to increased PPAR gamma expression
in the liver [91]. Our data showed that PPAR gamma expres-
sion in the liver decreases in septic animals and omega-9
treatment increases it, suggesting that PPAR gamma liver
expression may be involved in omega-9-protective effects
during sepsis.

Adipose tissue plays an essential role on the inflamma-
tory response regulation in many metabolic diseases, includ-
ing metabolic syndrome, obesity, diabetes, and sepsis [92,
93]. PPAR gamma controls adipocyte differentiation and
function. LPS or TNF alpha decreased PPAR gamma expres-
sion in adipose tissue [94], as seen in our model of sepsis.
The capacity of maintaining the anti-inflammatory grade
of visceral adipose tissue by the PPAR gamma agonist is
associated with the prevention of lung injury observed dur-
ing sepsis. The PPAR gamma agonist pioglitazone decreased
mortality of septic mice because it diminished inflammatory
cytokine production in omental tissue, controlling visceral
adipose tissue inflammation [93]. We reinforce the role of
adipose tissue in negative modulation of exacerbated inflam-
mation during sepsis. PPAR gamma expression in adipose
tissue may be relevant because it was lower in septic animals
and it was restored by omega-9 treatment. PPAR gamma
expression is induced by its ligands (Frygiel-Górniak,
2014). Although omega-9 has other targets, we believe that
omega-9 binding to PPAR gamma would restore PPAR
gamma protein expression and account, at least partially,
for omega-9-modulatory effect during sepsis.

In our previous report, we showed that omega-9 improves
lipid metabolism in septic mice increasing their survival by
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Figure 8: Omega-9 treatment restored PPAR gamma expression in the adipose tissue of CLPmice. Animals were treated with omega-9 for 14
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activating PPAR-regulated genes [19]. Accordingly, herein,
we showed that omega-9 treatment dampens inflammation
and increases bacterial clearance in septic mice possibly
involving PPAR gamma. Therefore, omega-9 treatment has
dual effect regulating lipid metabolism and inflammation.

4.1. Conclusion and Consideration. Omega-9 modulated the
immune response in septic mice. Omega-9 decreased the
production of proinflammatory cytokines, increased IL-10
production, reduced neutrophil migration and accumulation
in the site of infection, and also improved bacterial clearance.
Omega-9 treatment affected leukocyte trafficking in septic
animals and in inflamed cremaster muscle postcapillary
venules by decreasing selectin-dependent leukocyte rolling
in vivo. Those effects controlling inflammation and increas-
ing bacterial clearance likely contribute to the better outcome
of sepsis. Therefore, omega-9-enriched diet, particularly olive
oil, as supplemental food, may be advisable in patients with
infections and might sum up with the other benefits of the
ingestion of diets composed of unsaturated fatty acids.
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