

Universidade Federal do Estado do Rio de Janeiro Instituto de Biociências Programa de Pós-Graduação em Ciências Biológicas Mestrado em Biodiversidade Neotropical

Ellen Moura Lopes

Vanilla bahiana, fonte alternativa da Mata Atlântica para a produção de baunilha: uma abordagem proteômica através de *nanoLC-MS* de alta definição.

Rio de Janeiro

ELLEN MOURA LOPES

Vanilla bahiana, fonte alternativa da Mata Atlântica para a produção de baunilha: uma abordagem proteômica através de *nanoLC-MS* de alta definição.

Dissertação apresentada ao Programa de Pós-Graduação, Stricto sensu em Ciências Biológicas do Centro de Ciências Biológicas e da Saúde da Universidade Federal do Estado do Rio de Janeiro, como requisito parcial para a obtenção do título de Mestre em Ciências Biológicas.

Orientadora: Profa. Dra. Andrea Furtado Macedo

Coorientadora: Profa. Dra. Maria Gabriela Bello Koblitz

Rio de Janeiro, RJ

Catalogação informatizada pelo(a) autor(a)

L864	Lopes, Ellen Moura Vanilla bahiana, fonte alternativa da Mata Atlântica para a produção de baunilha: uma abordagem proteômica através de nanoLC-MS de alta definição. / Ellen Moura Lopes Rio de Janeiro, 2018. 85
	Orientadora: Andrea Furtado Macedo. Coorientadora: Maria Gabriela Bello Koblitz. Dissertação (Mestrado) - Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ciências Biológicas, 2018.
	1. Vanilla bahiana Hoehne. 2. compostos fenólicos. 3. Vanilina. 4. Dodecil sulfato de sódio. 5. ?-mercaptoetanol. I. Macedo, Andrea Furtado, orient. II. Koblitz, Maria Gabriela Bello, coorient. III. Título.

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO INSTITUTO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

Folha de aprovação

Ellen Moura Lopes

Vanilla bahiana, fonte alternativa da Mata Atlântica para a produção de baunilha: uma abordagem proteômica através de *nanoLC-MS* de alta definição

Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical) da Universidade Federal do Estado do Rio de Janeiro como requisito para obtenção do título de Mestre em Biodiversidade Neotropical.

Rio de Janeiro, 22 de de 2018. 20 Lever

Banca Examinadora:

Farbel.

Prof.^a Dra. Andrea Furtado Macedo (Orientadora) Universidade Federal do Estado do Rio de Janeiro

Prof.^a Dra. Maria Gabriela Bello Koblitz (Coorientadora) Universidade Federal do Estado do Rio de Janeiro

Prof. Dr. Joel Campos de Paula Universidade Federal do Estado do Rio de Janeiro

Prof.ª Dra. Eidy de Oliveira Santos Fundação Centro Universitário Estadual da Zona Oeste

AGRADECIMENTOS

À Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), por financiar e tornar possível o desenvolvimento da pesquisa. Obrigada também à UNIRIO, PPGBIO e ao CNPQ, por me concederem uma bolsa de incentivo à ciência.

A minha orientadora, Professora Dr.^a Andrea Furtado Macedo, pela coordenação do projeto, pela oportunidade e apoio de anos. Agradeço a sua dedicação, paciência, competência, generosidade, revisões e sugestões, que foram fundamentais para a minha vida acadêmica e para a conclusão desta dissertação. Sou grata por todo seu carinho e todas as conversas.

A coorientação da Professora Dr.^a Maria Gabriela Bello Koblitz, pela dedicação, apoio, competência, generosidade e suas revisões e sugestões que também foram fundamentais para conclusão deste trabalho.

A todos os professores do mestrado PPGBIO que de alguma forma contribuíram positivamente para minha formação.

Aos meus colegas do mestrado pelo apoio ao longo desses anos. As minhas amigas Izabella Fontenelle e Aloma Nogueira pelas conversas e momentos de descontração.

A Unirio, seus funcionários e servidores do setor de transporte, biblioteca, segurança, limpeza e secretaria.

Aos meus amigos do Laboratório Integrado de Biologia Vegetal (LIBV) que me acompanham diariamente: Ana Carolina Pereira, Gustavo Bocayuva, Vinícius Portella e Fernanda D'Andrea, assim como outros amigos da Unirio. Em especial gostaria de agradecer as amigas Roberta Linhares e Joana Oliveira pelo apoio, conversas e risadas ao som Vanilla Ice. Não teria conseguido sem vocês ao meu lado, sempre me ajudando e compartilhando. Aos coautores e colaboradores desse estudo.

Ao Instituto Chico Mendes de Conservação da Biodiversidade (ICMBIO) por conceder licenças para as coletas. A secretaria de meio ambiente pelas permissões de coleta e auxílio. A minha família, meus pais Cristiane e Mauricio Lopes por toda a paciência, apoio de muitos anos, dedicação pela minha educação e crescimento. Ao meu irmão, Eric, por todas as nossas conversas e seu apoio. Ao Johnny por todo o companheirismo e carinho.

Gostaria de agradecer aos meus amigos, à Rayanne Luiz pelos anos de amizade, por me apoiar, ouvir e por todo o carinho. Gostaria de dedicar essa dissertação a memória de Cíntia Silva, uma amiga que estaria terminando o mestrado esse ano. "As vezes a vida é iluminada por pessoas tão especiais, que nos tornamos felizes só porque um dia fizemos parte de suas vidas".

RESUMO

O extrato natural de baunilha tem grande importância econômica, sendo a vanilina um de seus principais componentes. A produção desse extrato é cara, laboriosa e demorada para a demanda mundial. Atualmente, existe uma grande perda de variabilidade genética das espécies de Vanilla. Fatores como o desmatamento, mudanças climáticas, doenças e extrativismo predatório impactam na sobrevivência das espécies de Vanilla. Com isso, a caracterização bioquímica dessas espécies tem se mostrado uma alternativa para a conservação, produção e desenvolvimento de indivíduos mais resistentes. Sendo assim, o objetivo desse trabalho foi caracterizar a expressão proteica dos frutos maduros de Vanilla bahiana, avaliando a melhor metodologia de extração. Seis soluções foram selecionadas: Vb1 -Tris-HCl; Vb2 – solução Vb1 + 0,5% de β -mercaptoetanol (β -MT); Vb3 -Vb2 + 1% de dodecil sulfato de sódio (SDS); Vb4 – Vb2 + 0,1% de SDS; Vb5 - Vb1 + 1% de SDS e Vb6 -Vb1 + 0,1% de SDS. Após a extração, as proteínas digeridas foram analisadas por cromatografia liquida acoplada a espectrômetro de massas. O software Progenesis QI foi utilizado resultando na identificação de 2326 proteínas, sendo 135 relacionadas à floração e frutificação e 65 à biossíntese de metabólitos ligados ao aroma e sabor de baunilha. A maior diversidade de proteínas foi obtida nas extrações com 1% de SDS. As proteínas identificadas nos frutos de V. bahiana confirmam o potencial enzimático dessa espécie na produção de compostos, já descritos na literatura, como responsáveis pelo aroma e sabor do extrato natural de baunilha, potencial esse validado pela quantificação de vanilina nos frutos da espécie estudada.

Palavras-chave: Vanilla bahiana Hoehne; compostos fenólicos; Bottom-up; Vanilina; Dodecil sulfato de sódio; β-mercaptoetanol

ABSTRACT

The natural extract of vanilla has great economic importance, being vanillin one of its main components. The production of this extract is expensive, laborious and time consuming for world demand. Currently there is a countless loss of genetic variability of the producer species. Factors such as deforestation, climatic changes, diseases and predatory extractivism impact the survival of Vanilla spp. Thus, the biochemical characterization of these species has shown to be an alternative for the conservation, production and development of more resistant individuals. Therefore, the objective of this work is to characterize the protein expression of mature fruits of Vanilla bahiana, evaluating the best extraction methodology. Six solutions were selected: Vb1-Tris-HCl; Vb2 - Vb1 + 0.5% β -mercaptoethanol solution $(\beta$ -MT); Vb3 -Vb2 + 1% sodium dodecyl sulfate (SDS); Vb4 - Vb2 + 0.1% SDS; Vb5-Vb1 +1% SDS and Vb6 -Vb1 + 0.1% SDS. After extraction, the digested proteins were analyzed by liquid chromatography coupled to a mass spectrometer. The Progenesis QI software was used resulting in the identification of 2326 proteins, 135 related to flowering and fruiting, and to the biosynthesis of metabolites linked to the aroma and flavor of vanilla. The highest protein diversity was obtained in extractions with 1% SDS. The proteins identified in the fruits of V. bahiana point to the enzymatic potential of this species in the production of compounds, already described in the literature, as responsible for the aroma and flavor of the natural extract of vanilla, potential validated by the quantification of vanillin in fruits of the studied species.

Key-words: Vanilla bahiana Hoehne; *Bottom up*; *Vanillin; phenolic compounds; sodium dodecyl sulfate; β-mercaptoethanol*

LISTA DE FIGURAS

Introdução

igura 1. Estrutura química da Vanilina1
igura 2. Processo de produção e cura dos frutos de baunilha natural
igura 3. Flor de Vanilla Bahiana no Monumento Natural do Pão de Açúcar e Urca, cidade
o Rio de Janeiro (RJ, Brasil)5
igura 4. Parte final da via de biossíntese de vanilina nos frutos de V. planifolia proposta
or Gallage et al. (Gallage et al. 2014)7

Capítulo 1

Material suplementar

upplementary Figure 7. Mass error distribution of V. bahiana. The normal distribution	of
hass errors obeyed a normal curve	50
upplementary Figure 8. Missed cleavages of V. bahiana data. Approximately 60% of the hissed cleavages were around zero	the 50
upplementary Figure 9. Mean number of peptides/protein of V. bahiana data, with	an
verage 6 peptides/ protein	51

LISTA DE TABELAS

Ca	nítulo	1
Ua	pitulo	1

Table 1. Mean quantification of vanillin, p-coumaric acid and pyrogallol. 3	3
Table 2. Comparation of vanillin content in fruit of Vanilla spp. according to literature	3
Material suplementar	
Supplementary Table 1. Proteins identified involved in Flowering	2
Supplementary Table 2. Proteins identified involved in Fruiting	0
Supplementary Table 3. Proteins identified involved in phenols biosynthesis	3
Supplementary Table 4. Proteins identified involved in terpene biosynthesis	0
Supplementary Table 5. Identified proteins of <i>V. bahiana</i> fruit from Vb1, Vb2, Vb3 and Vb5 samples- not presented	d 1

LISTA DE SIGLAS E ABREVIATURAS

$\mu L - Microlitro$	T- wave - Traveling-waveTOF - Time-of-		
nL - Nanolitro	flight (Tempo de voo)		
mM – Millimolar	eV- eletron Volt		
μm - Micrometro	CID – <i>Collision-induced dissociation</i> (dissociação induzida por colisão)		
fmol – Fentomol	KDa – Kilo Dalton		
spp. – Espécies	FDR – False Discovery Rate		
US\$ - Dolar americado	CV- Coeficiente de variação		
UK – Reino Unido	KECC Enciclonódia da Canas a Conoma		
USA – Estados Unidos da América	de Kioto		
IMS- Ion mobility separation (separação de			
mobilidade iónica)			
MS – Espectrometria de Massas			
LC-MS – Cromatografia liquida acoplado a			
Espectrômetro de Massas			
UPLC – Cromatografia líquida de Ultra Performace			
HPLC – Cromatografia líquida de alta eficiência			
TCA – Ácido tricloroacético			
PCA – Análise de componentes principais			
TIC - <i>Total ion account</i> (Contagem total de ions)			
GFP – [Glu1]-Fibrinopeptide B human (Fibrinopeptídeo B humano)			

SUMÁRIO

Introdução	1
Cultivo e produção de baunilha	1
A espécie brasileira: Vanilla bahiana	4
Estudos proteômicos de Vanilla spp	5
Soluções de extração de proteínas	7
Objetivo Geral	9
Objetivos específicos	9
Referências Bibliográficas	9
Capítulo 1	16
Conclusões Gerais	72
Perspectivas Futuras	72

Introdução

Cultivo e produção de baunilha

A tribo Vanilleae pertence à família Orchidaceae e contém 10 gêneros, incluindo o gênero pantropical *Vanilla* Miller, popularmente conhecida como baunilha (Pansarin, Aguiar, and Ferreira 2012). As espécies de *Vanilla* são monofiléticas e representadas por aproximadamente 120 espécies, até então descritas (Ormerod and Cootes 2013). A maior diversidade dessas espécies está concentrada em regiões tropicais, principalmente nos biomas brasileiros (Chase et al. 2015; Pansarin, Aguiar, and Ferreira 2012). Muitas espécies deste gênero são consideradas raras ou ameaçadas devido ao: desmatamento de seu habitat original (tipicamente subcosmopolita), mudanças climáticas, exploração predatória e agentes patogênicos pandêmicos (Divakaran et al. 2015; Divakaran, Babu, and Peter 2006). No entanto, esse gênero é economicamente importante devido à presença de vanilina produzida nos frutos das *Vanilla spp*. (Rain and Group 2004).

A vanilina é o principal componente do sabor e aroma da baunilha, que por sua vez é um dos sabores naturais mais populares do mundo, devido à sua importância na indústria de alimentos, farmacêutica, perfumaria e cosméticos (Pansarin, Aguiar, and Ferreira 2012). Estudos vêm mostrando a eficiência da vanilina, e outros compostos derivados do extrato de baunilha, contra diversas doenças devido a suas características antioxidantes, anticancerígenas, antimutagênica, dentre outras (Anuradha, Shyamala, and Naidu 2013). A vanilina (4-hydroxy-3-methoxybenzal- dehyde) é um aldeído aromático, que pertencente ao grupo de compostos fenólicos simples (C6-C1) (Figura 1) e é encontrada em uma concentração mais elevada nos frutos maduros de *V. planifolia* (Palama 2014).

Figura1.EstruturaquímicadaVanilina.Fonte:https://pubchem.ncbi.nlm.nih.gov/compound/vanillin#section=2D-structure

Baunilha é o condimento cultivado mais valioso e o terceiro mais caro do mundo após o açafrão e o cardamomo (Hrazdina 2006). Devido à sua alta demanda, a produção global chega a 5600 toneladas de frutos curados e o extrato natural de vanilina custa cerca de US\$ 1.200 a US\$ 4.000/kg (Rubert et al. 2016). A produção natural de baunilha é cara, laboriosa e demorada (Divakaran et al. 2015) (Figura 2). A polinização das flores de Vanilla é realizada à mão, onde para se obter 1 Kg de vanilina são necessários aproximadamente 500 kg do fruto, correspondente a 40.000 flores de V. planifolia polinizadas (Gallage and Møller 2018). O cultivo clonal é geralmente aplicado a duas espécies: Vanilla planifolia G. Jackson (syn. Vanilla fragrans Andrews) e Vanilla tahitensis Moore, com V. planifolia fornecendo 95% da produção mundial (Kahane et al. 2008). Apesar da grande importância, a produção clonal de V. planifolia provocou uma redução na variabilidade genética e deixou as espécies vulneráveis a doenças, que atualmente afetam negativamente a produção mundial de baunilha em 50-90% (Gallage and Møller 2018; Pinaria, Liew, and Burgess 2010). O preço do extrato natural vem sendo elevado devido à alta demanda e fontes naturais limitadas (Greule et al. 2015). Atualmente, o extrato natural de baunilha chega a custar em média US\$600/Kg, preço que vem aumentando devido ao desmatamento e às catástrofes naturais, como ciclones, que destroem milhares de hectares de cultivos de V. planifolia no principal país produtor, Madagascar (Strong 2017).

Uma alternativa mais barata ao extrato natural é o uso da vanilina sintética, que usa o guaiacol e a lignina como compostos de partida para a produção de vanilina sintética (Gallage and Møller 2018). Sendo mais barata, essa é usada por cerca de 50% do mercado mundial para as mais diversas finalidades, como na indústria alimentícia (Walton, Mayer, and Narbad 2003). A síntese química da vanilina tem suas desvantagens, que atualmente não se encaixam na demanda consciente do uso de recursos e preservação ambiental. A síntese química da vanilina gera 160 Kg de resíduos por 1 Kg de vanilina obtida, consequentemente provocando um impacto ambiental negativo (Hocking 1997). O extrato natural de baunilha possui uma qualidade de sabor e aroma superior ao sintético, relacionado a uma mistura de diversos compostos. Até então, 200 compostos aromáticos foram identificados nos frutos curados de *Vanilla spp*. (Medina, Rodriguez Jiménes, and García 2009). Vinte e seis compostos fenólicos, com concentrações acima de 1 mg/Kg, foram identificados como responsáveis pelo aroma e sabor característico da baunilha, dentre os quais os mais frequentemente citados pela literatura são: vanilina (4-hidroxi-3-metoxibenzaldeído), álcool de vanilina, ácido vanílico, álcool 4-hidroxibenzilo, 4-

hidroxibenzaldeído, ácido 4-hidroxibenzóico, álcool anisílico, anisaldeído e ácido anísico (Sharma et al. 2007; Pérez-Silva et al. 2006).

Os frutos fermentados, ou curados, de *V. planifolia* contêm aproximadamente 2% de vanilina, dependendo do seu local de origem: México com cerca de 1,75%, Sri Lanka 1,5% e Indonésia 2,75% (Parthasarathy, Chempakam, and Zachariah 2008). Foi possível constatar que além da espécie, outros fatores podem interferir com a qualidade do extrato de baunilha natural como: o processo de cura, estágio de maturação do fruto, os nutrientes do solo, calor, incidência luminosa, regime de chuvas, microrganismos presentes no processo de cura dos frutos, dentre outros (Palama 2014; Gu et al. 2017; Baqueiro-Peña and Guerrero-Beltrán 2016). A maior concentração de vanilina e outros compostos fenólicos ligados ao sabor e aroma de baunilha podem ser usados como indicadores de sua qualidade para fins comerciais ou até mesmo marcadores de estágio de desenvolvimento (Sharma et al. 2007; Pérez-Silva et al. 2006; Greule et al. 2015).

Frutos maduros produzem uma concentração superior de compostos fenólicos (Medina, Rodriguez Jiménes, and García 2009). O processo de verificação da maturação dos frutos de *V. planifolia* deve ser feito de duas a três vezes por semana, uma vez que os frutos imaturos e maduros apresentam praticamente a mesma coloração e não apresentam nem tamanho, nem aroma distintos (Medina, Rodriguez Jiménes, and García 2009).

Com base nos argumentos acima relacionados à difícil produção, à susceptibilidade das espécies, à alta demanda e ao aumento dos preços, existe um esforço mundial para procurar novas espécies de *Vanilla*. Essas espécies poderiam melhorar a cultura, o sabor e o aroma de baunilha, visando aumentar a produção de ingredientes ativos e ampliar os recursos genéticos (Virol et al. 2016; Anuradha, Shyamala, and Naidu 2013). Para isso, é necessária uma caracterização química dos frutos das *Vanilla spp*.

Figura 2. Processo de produção e cura dos frutos de baunilha natural. Fonte: <u>http://www.provagourmet.us/the-vanilla-process</u>

A espécie brasileira: Vanilla bahiana

Vanilla bahiana Hoehne é uma espécie endêmica da Floresta de Mata Atlântica brasileira, e ainda cientificamente e economicamente inexplorada (Figura 3). Existem poucos trabalhos publicado com *V. bahiana*, em geral estes estudos descrevem sua reprodução, filogenia e localização (de Fraga, Couto, and Pansarin 2017; Villanueva-Viramontes, Hernández-Apolinar, Fernández-Concha, et al. 2017; Sambin and Chiron 2015; Moreira, Barberena, and Lopes 2014; Odoux 2011). Esta espécie é filogeneticamente próxima a *V. planifolia* e ocorre nas regiões do Pará, Pernambuco, Bahia, Espírito Santo e Rio de Janeiro, especialmente em restingas, em áreas de caatinga, cerrado e na borda da Floresta Atlântica (Villanueva-Viramontes, Hernández-Apolinar, Carnevali Fernández-Concha, et al. 2017; Gigant et al. 2011; Bouetard et al. 2010).

A *V. bahiana* é autogâmica, como a maioria das *Vanilla spp.*, mas depende de polinizadores para a reprodução. A *V. bahiana*, assim como grande parte das *Vanilla spp.*, é hemiepífita (herbáceas). Essa apresenta flores com sépalas verdes e pétalas brancas levemente amareladas e oblanceoladas de ápice agudo (Figura 3). A floração dessa espécie

se estende por oito meses (de novembro a junho), com um pico em abril (Anjos, Barbarena, and Pigozzo 2016).

Como outras espécies do gênero, a *V. bahiana* enfrenta problemas quanto à redução da população, o que enfatiza a urgência de sua caracterização química, ainda não publicada (Moreira, Barberena, and Lopes 2014).

Figura 3. Flor e fruto de *Vanilla bahiana* no Monumento Natural do Pão de Açúcar e Urca, cidade do Rio de Janeiro (RJ, Brasil). Foto por: Ellen Lopes e Roberta Linhares.

Estudos proteômicos de Vanilla spp.

Recentes avanços em biotecnologia permitiram uma alternativa ao método de síntese química da vanilina, a bioengenharia de vanilina natural (Gallage and Møller 2015; Busconi et al. 2017; Gallage and Møller 2018; Chee et al. 2017). Embora, existam muitos esforços para estudar as *Vanilla spp*. e desenvolver a bioengenharia de vanilina, de acordo com Gallage e Møller (2018), ainda persiste a necessidade de se caracterizar e conhecer as vias de biossíntese, não apenas de vanilina, mas dos demais compostos característicos do aroma e sabor de baunilha (Gallage and Møller 2018). De acordo com o mesmo, as *Vanilla spp*. produzem em seus frutos vanilina em concentrações elevadas e até então, não existe outro organismo biológico conhecido na natureza, que consiga produzir vanilina nessa concentração (Gallage and Møller 2018, 2015).

A proteômica colabora no entendimento do funcionamento celular, permitindo a compreensão da função das proteínas nas células, fornecendo as informações das modificações pós-transducionais dos genes. O objetivo final da proteômica é identificar todas as proteínas em uma célula e determinar a função de cada uma, assim desvendando as

vias de biosíntese de compostos de interesse de um organismo em um determinado momento (Wilson and Walker 2010).

No presente trabalho, foi utilizado o método "*bottom-up*" que identifica proteínas digeridas por processo enzimático ou químico antes da análise por *LC-MS*. As proteínas foram digeridas diretamente em uma mistura complexa, e os peptídeos resultantes foram analisados (Martins Ferreira, Guest, and Martins-de-souza 2017; Bond et al. 2013).

Até então, os estudos proteômicos sobre o gênero *Vanilla* estão restritos ao desenvolvimento de calos através da cultura de tecidos, revelando o ineditismo e a importância do presente trabalho (Guerrero et al. 2011; Tan et al. 2013; Tan et al. 2014; Palama et al. 2010;). Especificamente, o estudo de Gallage et al. (2014) utilizou uma análise combinada de transcriptômica e proteômica em frutos de *V. planifolia*, com foco em algumas enzimas sugeridas pela literatura, com o intuito de propor uma via de biossíntese de vanilina mais completa (Gallage et al. 2014). De acordo com esse estudo, existe uma enzima chave, a vanilina sintase, responsável por catalisar a clivagem da dupla ligação de carbono do ácido ferúlico e de seu glicosídeo em vanilina e seu glicosídeo, respectivamente (Figura 4). A vanilina sintase, de acordo com o estudo, pertence à família de proteases de cisteínas, que são conhecidas por possuírem funções fisiológicas versáteis (Gallage et al. 2014). Apesar de trabalhos mais recentes terem sidos publicados, de acordo com Kundu (2017), a via biosintética proposta por Gallage et al (2014) continua sendo a mais aceita (Kundu 2017).

Figura 4. Parte final da via de biossíntese de vanilina nos frutos de *V. planifolia* proposta por Gallage et al. (Gallage et al. 2014).

Soluções de extração de proteínas

A necessidade de entender melhor a produção de composto do aroma e sabor dos frutos de *Vanilla spp*. é possível através do estudo das suas vias bissintéticas (Palama 2014). O perfil proteômico de uma espécie identifica os componentes reguladores que medeiam as diversas vias de biossíntese sendo assim, as proteínas podem servir como marcadores para melhorar a qualidade nutricional, sabor, resistência/tolerância à doença e a vida útil das moléculas de interesse (Kilambi et al. 2016).

Contudo, estudos do perfil proteômico tem um grande desafio, a variada amplitude dinâmica das proteínas que constituem o complexo proteico (Kilambi et al. 2016). Embora vários protocolos de extração de proteínas de tecidos de frutos estejam disponíveis como: tomate (Kilambi et al. 2016), pimenta (Choi and Hwang 2011), morango (Bianco et al. 2009), uva (Negri et al. 2015), banana (Toledo et al. 2012), maçã e pêra (Kiemer and Cesareni 2007), a maioria deles não está relacionado à extração tipo *shotgun*. Atualmente, esse método é o mais indicado para análise de perfis proteômicos apresentando grande amplitude dinâmica de proteínas (Garrido et al. 2016). A extração de proteínas tão diversas em concentrações também variadas, presentes nos frutos ou em outros tecidos vegetais,

apresenta substâncias interferentes como os pigmentos, carboidratos, polifenóis, polissacarídeos e amido, que podem levar a desnaturação, inativação de proteínas e atrapalhar a extração das mesmas (Song and Braun 2008).

Entre os tampões de extração de proteína mais comuns estão: os reguladores de pH (por exemplo, o Tris), agentes redutores (por exemplo, ditiotreitol - DDT, β -mercaptoetanol) e os desnaturantes (por exemplo, uréia, dodecil sulfato de sódio, CHAPS) (Song and Braun 2008). No presente estudo, foi sugerido o uso de um agente regulador de pH (Tris-HCl), um agente redutor (β -mercaptoetanol) e um detergente iônico (dodecil sulfato de sódio – SDS) com o intuito de aumentar a capacidade extratora das proteínas do fruto de *V. bahiana*. De acordo com Wilson & Walker (2010), o β -mercaptoetanol reduz as pontes de dissulfeto, que mantêm a estrutura terciária das proteínas, e o SDS se liga fortemente as proteínas auxiliando na solubilização das mesmas.

Protocolos de extração de proteínas que utilizam soluções de fenol também foram relatados como adequados para a extração de baixas concentrações de proteínas em frutas (Vincent, Wheatley, and Cramer 2006). Contudo, protocolos de extração de proteínas de membrana baseados no uso de fenol também precisam dos detergentes (como o SDS) para otimizar a extração de proteínas (Sun, Wang, and Li 2012; Lin et al. 2012; Hurkman and Tanaka 1986; Botelho et al. 2010; Wu and Wang 1984). O uso de SDS em análise de espectrometria de massas pode ser problemático, pois sua presença nas amostras pode ocasionar supressão de íons, assim reduzindo significativamente o número proteínas identificadas. Porém alguns estudos apontam, que após a retirada do SDS das amostras, esse desnaturante pode auxiliar e melhorar a extração de proteínas (Hurkman and Tanaka 1986; Sun, Wang, and Li 2012; Liu et al. 2012; Lin et al. 2012; Botelho et al. 2010; Song and Braun 2008).

Método HDMS^E

Para as análises proteômicas de diferentes condições de extração realizadas no presente estudo, e para alcançar a confiabilidade e reprodutibilidade dos resultados, utilizamos uma abordagem 2D nano-UPLC-HDMS^E (de alta definição), livre de marcadores com Aquisição de Dados Independentes (ADI). Os formatos multiplex de alta resolução MS^E e HDMS^E são métodos recomendados para proteômica de amostras complexas. No método HDMS^E os íons são separados com base na onda de voltagem da mobilidade iônica, e são submetidos à fragmentação, onde serão analisados os íons precursores e seus íons filhos,

garantindo maior confiabilidade nas identificações (Martins Ferreira, Guest, and Martinsde-souza 2017; Bond et al. 2013).

Objetivo Geral

Segundo a nossa hipótese de que *V. bahiana* pode apresentar potencial para produzir vanilina e outros fenóis relacionados ao aroma e sabor da baunilha, o objetivo desse trabalho é caracterizar a expressão proteica dos frutos maduros de *Vanilla bahiana* da Mata Atlântica do Rio de Janeiro.

Objetivos específicos

Avaliar qual solução é capaz de extrair: A) maior conteúdo de proteínas totais; B) maior diversidade de proteínas; C) maior número de proteínas ligadas a biossíntese de vanilina e outros fenóis encontrados no extrato natural de baunilha. Identificar, de acordo com a literatura, quais proteínas estão relacionadas à floração, amadurecimento do fruto, aroma e sabor de baunilha. E, finalmente, validar os dados proteômicos quantificando três compostos de interesse: vanilina, ácido *p*-coumárico e pirogalol.

Referências Bibliográficas

- Anjos, A.M., F.F.V.A. Barbarena, and C.M. Pigozzo. 2016. "Biologia Reprodutiva de Vanilla Bahiana Hoehne (Orchidaceae)." *Orquidário* 30 (3–4):67–79.
- Anuradha, Krushnamurthy, Bellur Nanjundaiah Shyamala, and Madeneni Madhava Naidu. 2013. "Vanilla- Its Science of Cultivation, Curing, Chemistry, and Nutraceutical Properties." *Critical Reviews in Food Science and Nutrition* 53 (12):1250–76. https://doi.org/10.1080/10408398.2011.563879.
- Baqueiro-Peña, Itzamná, and José Ángel Guerrero-Beltrán. 2016. "Vanilla (Vanilla Planifolia Andr.), Its Residues and Other Industrial by-Products for Recovering High Value Flavor Molecules: A Review." *Journal of Applied Research on Medicinal and Aromatic Plants*. https://doi.org/10.1016/j.jarmap.2016.10.003.
- Bianco, Linda, Loredana Lopez, Anna Grazia Scalone, Mariasole Di Carli, Angiola Desiderio, Eugenio Benvenuto, and Gaetano Perrotta. 2009. "Strawberry Proteome Characterization and Its Regulation during Fruit Ripening and in Different Genotypes." *Journal of Proteomics* 72 (4). Elsevier B.V.:586–607.

https://doi.org/10.1016/j.jprot.2008.11.019.

- Botelho, Diane, Mark J. Wall, Douglas B. Vieira, Shayla Fitzsimmons, Fang Liu, and Alan Doucette. 2010. "Top-down and Bottom-up Proteomics of Sds-Containing Solutions Following Mass-Based Separation." *Journal of Proteome Research* 9 (6):2863–70. https://doi.org/10.1021/pr900949p.
- Bond, Nicholas J, Pavel V Shliaha, Kathryn S Lilley, and Laurent Gatto. 2013. "Improving Qualitative and Quantitative Performance for MS E -Based Label-Free Proteomics." *Journal of Proteome Research* 12 (6):2340–53. https://doi.org/10.1021/pr300776t.
- Bouetard, Anthony, Pierre Lefeuvre, Rodolphe Gigant, Séverine Bory, Marc Pignal,
 Pascale Besse, and Michel Grisoni. 2010. "Evidence of Transoceanic Dispersion of
 the Genus Vanilla Based on Plastid DNA Phylogenetic Analysis." *Molecular Phylogenetics and Evolution* 55 (2). Elsevier Inc.:621–30.
 https://doi.org/10.1016/j.ympev.2010.01.021.
- Busconi, Matteo, Luigi Lucini, Giovanna Soffritti, Jamila Bernardi, Letizia Bernardo,
 Christel Brunschwig, Sandra Lepers-Andrzejewski, Phila Raharivelomanana, and Jose
 A. Fernandez. 2017. "Phenolic Profiling for Traceability of Vanilla ×tahitensis." *Frontiers in Plant Science* 8 (October):1–13. https://doi.org/10.3389/fpls.2017.01746.
- Chase, Mark W., Kenneth M. Cameron, John V. Freudenstein, Alec M. Pridgeon, Gerado Salazar, Cássio van den Berg, and André Schuiteman. 2015. "An Updated Classification of Orchidaceae." *Botanical Journal of the Linnean Society* 177 (2):151–74. https://doi.org/10.1111/boj.12234.
- Chee, Marcus Jenn Yang, Grantley W. Lycett, Teng Jin Khoo, and Chiew Foan Chin. 2017. "Bioengineering of the Plant Culture of Capsicum Frutescens with Vanillin Synthase Gene for the Production of Vanillin." *Molecular Biotechnology* 59 (1). Springer US:1–8. https://doi.org/10.1007/s12033-016-9986-2.
- Choi, Du Seok, and Byung Kook Hwang. 2011. "Proteomics and Functional Analyses of Pepper Abscisic Acid-Responsive 1 (ABR1), Which Is Involved in Cell Death and Defense Signaling." *The Plant Cell* 23 (2):823–42. https://doi.org/10.1105/tpc.110.082081.
- Divakaran, Minoo, K. Nirmal Babu, and K. V. Peter. 2006. "Conservation of Vanilla Species, in Vitro." Scientia Horticulturae 110 (2):175–80. https://doi.org/10.1016/j.scienta.2006.07.003.
- Divakaran, Minoo, K Nirmal Babu, P N Ravindran, K V Peter, Asian J Plant, and Sci Res.

2015. "Biotechnology for Micropropagation and Enhancing Variations in Vanilla" 5 (2):52–62.

- Fraga, Claudio Nicoletti de, Dayvid Rodrigues Couto, and Emerson Ricardo Pansarin.
 2017. "Two New Species of Vanilla (Orchidaceae) in the Brazilian Atlantic Forest." *Phytotaxa* 296 (1):063–072. https://doi.org/10.11646/phytotaxa.296.1.4.
- Gallage, Nethaji J., and Birger Lindberg Møller. 2015. "Vanillin–Bioconversion and Bioengineering of the Most Popular Plant Flavor and Its De Novo Biosynthesis in the Vanilla Orchid." *Molecular Plant* 8 (1). Elsevier Ltd:40–57. https://doi.org/10.1016/j.molp.2014.11.008.
- Gallage, Nethaji J., and Birger Lindberg Møller. 2018. Vanilla: The Most Popular Flavour. https://doi.org/10.1007/978-3-319-67903-7_1.
- Gallage, Nethaji J, Esben H Hansen, Rubini Kannangara, Carl Erik Olsen, Mohammed Saddik Motawia, Kirsten Jørgensen, Inger Holme, Kim Hebelstrup, Michel Grisoni, and Birger Lindberg Møller. 2014. "Vanillin Formation from Ferulic Acid in Vanilla Planifolia Is Catalysed by a Single Enzyme." *Nature Communications* 5 (May):4037. https://doi.org/10.1038/ncomms5037.
- Garrido, Bruno Carius, Gustavo H.M.F. Souza, Daniela C. Lourenço, and Maíra Fasciotti. 2016. "Proteomics in Quality Control: Whey Protein-Based Supplements." *Journal of Proteomics* 147. Elsevier B.V.:48–55. https://doi.org/10.1016/j.jprot.2016.03.044.
- Gigant, Rodolphe, Severine Bory, Michel Grisoni, and Pascale Besse. 2011. "Biodiversity and Evolution in the Vanilla Genus." *The Dynamical Processes of Biodiversity - Case Studies of Evolution and Spatial Distribution*, no. figure 1:1–27. https://doi.org/10.5772/24567.
- Greule, Markus, Armin Mosandl, John T. G. Hamilton, and Frank Keppler. 2015.
 "Comment on Authenticity and Traceability of *Vanilla* Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen." *Journal of Agricultural and Food Chemistry* 63 (21):5305–6. https://doi.org/10.1021/jf506172q.
- Gu, Fenglin, Yonggan Chen, Yinghua Hong, Yiming Fang, and Lehe Tan. 2017.
 "Comparative Metabolomics in Vanilla Pod and Vanilla Bean Revealing the Biosynthesis of Vanillin during the Curing Process of Vanilla." *AMB Express* 7 (1).
 Springer Berlin Heidelberg:116. https://doi.org/10.1186/s13568-017-0413-2.
- Guerrero, A., S.E Valdés-Rodríguez, B Durán-Sánchez, M.T González-Arnao, B Jiménez-Francisco, and C.E Lázaro-Vallejo. 2011. "Cryopreservation and Proteomic Analysis

of Vanilla (V. Planifolia A.) Apices Treated with Osmoprotectants." *Acta Horticulturae*, no. 908:67–72. https://doi.org/10.17660/ActaHortic.2011.908.5.

- Hocking, Martin B. 1997. "Vanillin: Synthetic Flavoring from Spent Sulfite Liquor." Journal of Chemical Education 74 (9):1055. https://doi.org/10.1021/ed074p1055.
- Hrazdina, G. 2006. "Aroma Production by Tissue Cultures Aroma Production by Tissue Cultures." *Journal of Agricultural and Food Chemistry* 54 (February):1116–23. https://doi.org/10.1021/jf053146w.
- Hurkman, William J, and Charlene K Tanaka. 1986. "Solubilization of Plant Membrane Proteins for Analysis by Two-Dimensional Gel Electrophoresis." *Plant Physiology* 81 (3):802–6. https://doi.org/10.1104/pp.81.3.802.
- Kahane, R, P Besse, M Grisoni, F Le Bellec, and E Odoux. 2008. "Bourbon Vanilla: Natural Flavour with a Future." *Chronica Horticulturae* 48 (2):23–29.
- Kiemer, Lars, and Gianni Cesareni. 2007. "Comparative Interactomics: Comparing Apples and Pears?" *Trends in Biotechnology* 25 (10):448–54. https://doi.org/10.1016/j.tibtech.2007.08.002.
- Kilambi, Himabindu V., Kalyani Manda, Hemalatha Sanivarapu, Vineet K. Maurya, Rameshwar Sharma, and Yellamaraju Sreelakshmi. 2016. "Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters." *Frontiers in Plant Science* 7 (June):1– 14. https://doi.org/10.3389/fpls.2016.00969.
- Kundu, Anish. 2017. "Vanillin Biosynthetic Pathways in Plants." *Planta* 245 (6). Springer Berlin Heidelberg:1069–78. https://doi.org/10.1007/s00425-017-2684-x.
- Lin, Yong, Huajun Jiang, Yujun Yan, Bin Peng, Jinhua Chen, Haiyan Lin, and Zhonghua Liu. 2012. "Shotgun Analysis of Membrane Proteomes by an Improved SDS-Assisted Sample Preparation Method Coupled with Liquid Chromatography-Tandem Mass Spectrometry." *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences* 911. Elsevier B.V.:6–14. https://doi.org/10.1016/j.jchromb.2012.10.016.
- Liu, Yi, Yong Lin, Yizhong Yan, Jianjun Li, Quanze He, Ping Chen, Xianchun Wang, and Songping Liang. 2012. "Electrophoretically Driven SDS Removal and Protein Fractionation in the Shotgun Analysis of Membrane Proteomes." *Electrophoresis* 33 (2):316–24. https://doi.org/10.1002/elps.201100364.

Medina, Javier De La Cruz, Guadalupe C. Rodriguez Jiménes, and Hugo S. García. 2009.

"VANILLA- Post-Harvest Operations." *Food and Agriculture Organization of the United Nations*.

- Martins Ferreira, Henrique Gustavo, Paul C Guest, and Daniel Martins-de-souza. 2017. "Multiplex Biomarker Techniques." In *Methods in Molecular Biology*, 1546:57–73. https://doi.org/10.1007/978-1-4939-6730-8.
- Moreira, Marina Muniz, FFVA Barberena, and RC Lopes. 2014. "Orchidaceae of the Grumari Restinga: Floristic and Similarity among Restingas in Rio de Janeiro State, Brazil." Acta Botanica Brasilica 28 (3):321–26. https://doi.org/10.1590/0102-33062014abb3173.
- Negri, Alfredo S., Bhakti Prinsi, Osvaldo Failla, Attilio Scienza, and Luca Espen. 2015.
 "Proteomic and Metabolic Traits of Grape Exocarp to Explain Different Anthocyanin Concentrations of the Cultivars." *Frontiers in Plant Science* 6 (August). https://doi.org/10.3389/fpls.2015.00603.
- Ormerod, Paul, and Jim Cootes. 2013. "Leafy Vanilla Species of the Philippines." *OrchideenJournal* 1:1–19.
- Palama, Tony L. 2014. "Metabolomic Analysis of a Plant from the Indian Ocean : Vanilla Planifolia." In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics, 471–78.
- Palama, Tony L, Patrice Menard, Isabelle Fock, Young H Choi, Emmanuel Bourdon, Joyce Govinden-Soulange, Muriel Bahut, Bertrand Payet, Robert Verpoorte, and Hippolyte Kodja. 2010. "Shoot Differentiation from Protocorm Callus Cultures of Vanilla Planifolia (Orchidaceae): Proteomic and Metabolic Responses at Early Stage." *BMC Plant Biology* 10:82. https://doi.org/10.1186/1471-2229-10-82.
- Pansarin, Emerson, João Aguiar, and Alessandro Ferreira. 2012. "A New Species of Vanilla (Orchidaceae : Vanilloideae) from São." *The New York Botanical Garden Press* 64 (June):157–61.
- Parthasarathy, V. A., B. Chempakam, and T. J. Zachariah, eds. 2008. *Chemistry of Spices*. IV. Massachusetts: CABI. https://doi.org/10.1079/9781845934057.0000.
- Pérez-Silva, a., E. Odoux, P. Brat, F. Ribeyre, G. Rodriguez-Jimenes, V. Robles-Olvera, M. a. García-Alvarado, and Z. Günata. 2006. "GC-MS and GC-Olfactometry Analysis of Aroma Compounds in a Representative Organic Aroma Extract from Cured Vanilla (Vanilla Planifolia G. Jackson) Beans." *Food Chemistry* 99 (4):728–35. https://doi.org/10.1016/j.foodchem.2005.08.050.

- Pinaria, A. G., E. C.Y. Liew, and L. W. Burgess. 2010. "Fusarium Species Associated with Vanilla Stem Rot in Indonesia." *Australasian Plant Pathology* 39 (2):176–83. https://doi.org/10.1071/AP09079.
- Rain, P, and Philip Lief Group. 2004. Vanilla: The Cultural History of the World's Most Popular Flavor and Fragrance. Jeremy P. Tarcher/Penguin.
- Rubert, Josep, Ondrej Lacina, Milena Zachariasova, and Jana Hajslova. 2016. "Saffron Authentication Based on Liquid Chromatography High Resolution Tandem Mass Spectrometry and Multivariate Data Analysis." *Food Chemistry* 204 (2015). Elsevier Ltd:201–9. https://doi.org/10.1016/j.foodchem.2016.01.003.
- Sambin, A, and Guy R Chiron. 2015. "Deux Nouvelles Espèces de Vanilla (Orchidaceae) de Guyane Française." *Richardiana* 15:306–16.
- Sharma, Upendra Kumar, Nandini Sharma, Ajai Prakash Gupta, Vinod Kumar, and Arun Kumar Sinha. 2007. "RP-HPTLC Densitometric Determination and Validation of Vanillin and Related Phenolic Compounds in Accelerated Solvent Extract of Vanilla Planifolia." *Journal of Separation Science* 30 (18):3174–80. https://doi.org/10.1002/jssc.200700229.
- Song, Jun, and Gordon Braun. 2008. "Application of Proteomic Techniques to Fruits and Vegetables." *Current Proteomics* 5 (3):191–201. https://doi.org/10.2174/157016408785909659.
- Strong, Andrea. 2017. "Pastry Chefs Forced to Get Creative as Vanilla Prices Soar." Eater Business Reports. 2017.
- Sun, Difei, Nan Wang, and Liang Li. 2012. "Integrated SDS Removal and Peptide Separation by Strong-Cation Exchange Liquid Chromatography for SDS-Assisted Shotgun Proteome Analysis." *Journal of Proteome Research* 11 (2):818–28. https://doi.org/10.1021/pr200676v.
- Tan, B. C., C. F. Chin, S. Liddell, and P. Alderson. 2014. "Protein Extraction for Callus and Node Cultures of Vanilla Planifolia Andrews." *Minerva Biotecnologica* 26 (July):115–26.
- Tan, Boon Chin, Chiew Foan Chin, Susan Liddell, and Peter Alderson. 2013. "Proteomic Analysis of Callus Development in Vanilla Planifolia Andrews." *Plant Molecular Biology Reporter* 31 (6):1220–29. https://doi.org/10.1007/s11105-013-0590-3.
- Toledo, Tatiana Torres, Silvia Beserra Nogueira, Beatriz Rosana Cordenunsi, Fábio César Gozzo, Eduardo Jorge Pilau, Franco Maria Lajolo, and João Roberto Oliveira Do

Nascimento. 2012. "Proteomic Analysis of Banana Fruit Reveals Proteins That Are Differentially Accumulated during Ripening." *Postharvest Biology and Technology* 70. Elsevier B.V.:51–58. https://doi.org/10.1016/j.postharvbio.2012.04.005.

- Villanueva-Viramontes, Sara, Mariana Hernández-Apolinar, Germán Carnevali Fernández-Concha, Alfredo Dorantes-Euán, Gabriel R. Dzib, and Jaime Martínez-Castillo. 2017.
 "Wild Vanilla Planifolia and Its Relatives in the Mexican Yucatan Peninsula: Systematic Analyses with ISSR and ITS." *Botanical Sciences* 95 (2):169–87. https://doi.org/10.17129/botsci.668.
- Villanueva-Viramontes, Sara, Mariana Hernández-Apolinar, Germán Carnevali Fernández-Concha, Alfredo Dorantes-Euán, Gabriel R Dzib, and Jaime Martínez Castillo. 2017.
 "Wild Vanilla Planifolia and Its Relatives in the Mexican Yucatan Peninsula: Systematic Analyses with ISSR and ITS." *Botanical Sciences* 95 (2):169–87.
- Vincent, Delphine, Matthew D. Wheatley, and Grant R. Cramer. 2006. "Optimization of Protein Extraction and Solubilization for Mature Grape Berry Clusters." *Electrophoresis* 27 (9):1853–65. https://doi.org/10.1002/elps.200500698.
- Virol, Arch, Christopher Puli, Subuhi Khan, and Wee-leong Chang Gardette. 2016. "First Complete Genome Sequence of Vanilla Mosaic Strain of Dasheen Mosaic Virus Isolated from the Cook Islands ." *Archives of Virology*. Springer Vienna. https://doi.org/10.1007/s00705-016-3133-z.
- Walton, Nicholas J., Melinda J. Mayer, and Arjan Narbad. 2003. "Vanillin." *Phytochemistry* 63 (5):505–15. https://doi.org/10.1016/S0031-9422(03)00149-3.
- Wilson, Keith, and John Walker. 2010. *Principles and Techniques of Biochemistry and Molecular Biology*. https://doi.org/10.1093/nar/gkl830.
- Wu, Fang-Sheng, and Menq-Yun Wang. 1984. "Extraction of Proteins for Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis from Protease-Rich Plant Tissues." *Analytical Biochemistry* 139 (1):100–103. https://doi.org/10.1016/0003-2697(84)90394-4.

Capítulo 1

Manuscrito a ser submetido à revista Journal of Agricultural and Food Chemistry (ACS Publications)

1 Vanilla bahiana, an alternative source of the Atlantic Forest for the production of vanilla: a

2 proteomic approach through high definition nano-LC-MS

- ³ ¹Ellen M. Lopes, ¹Roberta G. Linhares, ²Lucas de Oliveira Pires, ²Rosane Nora Castro, ^{3,4}Maria
- 4 Gabriela B. Koblitz, ⁴L. C. Cameron, ^{1,4} Andrea F. Macedo*.

⁵ ¹Integrated Laboratory of Plant Biology, Department of Botany, Institute of Biosciences, Federal

6 University of Rio de Janeiro State, UNIRIO. Av. Pasteur, 458, Urca, 22290-240 Rio de Janeiro, Brazil.

⁷ ²Universidade Federal Rural do Rio de Janeiro – ICE - Departamento de Química, BR 467 – Km

8 47, Seropédica, RJ, Brazil

³Food and Nutrition Graduate Program, Nutritional Biochemistry Center, Federal University of
Rio de Janeiro State, UNIRIO. Av. Pasteur, 296, Urca, 22290-250 Rio de Janeiro, Brazil.

⁴Laboratory of Protein Biochemistry - Center of Innovation of Mass Spectrometry, Federal
 University of State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Urca, 22290-250 Rio de Janeiro,
 Brazil.

14 *Corresponding author Tel. +55(21) 2530-2551; +55(21) 99198-5671; Email:

- 15 andrea.macedo@unirio.br; andreafm22@yahoo.com.br
- 16
- 17
- 18
- 19

20

23 Abstract

Vanilla spp. presented few cultivated species applied to vanilla production, despite the great demand, predatory exploitation and poor genetic variability threatening the natural vanilla production. Vanilla bahiana pods from the Atlantic Forest may be an alternative source for natural vanilla. This study applied bottom-up and shotgun proteomics analysis to identify proteins related to flowering, fruitening and vanilla flavor production processes. Extraction solutions combining Tris-HCl buffer, β-mercaptoethanol and SDS were assayed. Progenesis QI software loaded with an Orchidaceae database was able to identify 2326 proteins in our samples. Amongst them, 75 were highlighted as relevant to the synthesis of compounds related to vanilla flavor compounds, such as vanillin synthase, which was successfully extracted with 1% of SDS, a condition that also improved the diversity of extracted protein. The proteins identified in V. bahiana's pods point to the enzymatic potential of this species, validated by the quantification of vanillin in the samples.

Keywords: Bottom up proteomics; nano-LC-HDMS^E; vanillin; sodium dodecyl sulfate; β mercaptoethanol; vanillin synthase; Vanilla bahiana

47 Introduction

Vanilla spp. (*Orchidaceae*) are monophyletic species with the highest concentrated diversity in tropical regions, mainly in the Brazilian biomes¹. Many species of this genus are considered rare or endangered due to deforestation of their subcosmopolitan habitat, climate change, predatory exploitation and pandemic pathogenic agents². This is an economically relevant genus due to the synthesis of vanillin, a phenolic compound present in the cured pods³. This compound is considered to be amongst the most valuable cultivated spices in the world⁴, with further applications in health industry due to its antioxidant, anticarcinogenic, antimutagenic activities⁴.

The global production of Vanilla spp. weights around 5600 tons and the natural vanillin extract costs 55 around U\$1,200 - U\$4,000/kg. Today, natural vanilla production is expensive, time-consuming and 56 57 depends on clonal cultivation of two species: Vanilla planifolia G. Jackson (syn. Vanilla fragrans Andrews) and Vanilla tahitensis Moore, with the former providing 95% of world's production of natural 58 extract^{2,5}. Despite the great economic relevance, clonal production of V. planifolia has depleted the 59 genetic variability and left the species vulnerable to diseases, which jeopardizes the world's supply⁶. 60 The cheap synthetic vanillin compound has been widely commercialized since the 19th century, 61 62 however, the demand for the natural extract has been increasing. This is due to the consumers demand for products free of artificial additives, in addition to the natural product providing superior 63 flavor quality, as a result of a mixture of several different compounds⁷. 64

The difficult production, the susceptibility of species, the high demand and increasing prices created a worldwide effort to search for new *Vanilla* species as alternative sources for the purpose of crop and flavor improvement, aiming to enhance the production of active ingredients and to amplify the genetic resources⁸. In the Brazilian Atlantic Forest, an endemic species is still scientifically and economically unexplored, the *Vanilla bahiana* Hoehne⁹ and the hypothesis of this study was that this species may present potential to produce vanillin and other compounds related to vanilla flavor. To test this hypothesis, we applied a untargeted proteomics' strategy based on nanoUPLC and High Definition

Mass Spectrometry (HDMS^E) label-free quantitative approach was applied to characterize the protein expression of *Vanilla bahiana* from the Atlantic Forest of Rio de Janeiro, focusing on the proteins related to vanilla flavor production, flowering and fruit ripening.

75 Material and Methods

Plant material. Three mature *V. bahiana* pods, from three different individuals, were harvested from
the Natural Monument of Pão de Açúcar and Urca, Rio de Janeiro city (RJ, Brazil). The plant material
was identified by the Botanic Garden of Rio de Janeiro (catalog number: RB 646438, bar code number:
01111538, http://jabot.jbrj.gov.br/v2/consulta.php#).

Chemicals. All reagents were purchased from Sigma-Aldrich (St Louis, MO, USA) and were of LC MS grade, unless otherwise stated. Ultrapure water (resistivity > 18.2 MΩ·cm) (Barnstead[™]
 Smart2Pure[™], Thermo Fisher Scientific, MA, USA) was also used.

Protein extraction and digestion. The pods were freeze-dried, powdered and pooled (Figure S1). 83 Two hundred milligrams of this material were further pulverized in liquid nitrogen and extracted with 3 84 mL of different protein extraction solutions. Six different extraction solutions were assayed: 1 - TRIS-85 hydrochloride (HCl) buffer (pH 6.8; 125 nmol/L) (Vb1); 2 – solution 1 + 0.5% (v/v) β-mercaptoethanol 86 (β-MT) (10 mmol/L) (Vb2); 3 – solution 2 + 1% of sodium dodecyl sulfate (SDS) (Vb3); 4 – solution 2 87 + 0.1% of SDS (Vb4); 5 - solution 1 + 1% of SDS (Vb5) and 6 - solution 1 + 0.1% of SDS (Vb6) 88 (Figure S1). The samples were homogenized using an ultrasonic probe in 250W/10 min (Eco-89 sonic, Ultronique) and centrifuged (Thermo scientific, Sorvall Legend X1R) at 14,000xg, for 60 min, at 90 4 °C. The supernatants were transferred to an Amicon Ultra 3 KDa (Merck Millipore, Billerica, MA) in 91 92 which the samples were washed and concentrated. Three washing steps were performed using 2 mL 93 of ammonium bicarbonate buffer (pH 8.5, 50 mM). The protein concentration in each extracted sample was determined by the Bradford method¹⁰ using a flat plate reader (FlexStation 3; Molecular Devices, 94 CA). Each sample was diluted to a final concentration of 1 µg.µL⁻¹ of protein. Protein digestion was 95 performed according to Lobo et al.¹¹. 96

97 NanoUPLC and Label-Free Data-Independent Mass spectrometric analysis - HDMS^E analysis. The nanoUPLC-RP SYNAPT G2-S HDMS mass spectrometer instrument (Waters, Manchester, UK) was 98 99 used with an orthogonal effective resolution from the ion mobility separation (nanoESI-Qq-oaTOF). The analytical reversed-phase column nanoACQUITY HSS T3 1.8-µm (100µm x 100 mm) (Waters, 100 101 Manchester, UK) was used to separate the tryptic peptides. Prior to proteomic analysis, stoichiometric 102 measurements based on scouting runs of the integrated total ion account (TIC), were conducted for 103 each sample, to ensure standardized molar values across all conditions and normalize the injections 104 on the column.

For the HDMS^E acquisitions, specific volumes were injected for each technical injection sample at a rate of 350 nL min⁻¹/ 90 min. All the parameters were set according to Victorio et al.¹² study. The separation gradient of phase A (ultra-pure water with 0.1 % formic acid) and B (acetonitrile with 0.1% formic acid) was performed according to following schedule: 0 min - 97 % A, 1.0 min - 86.9 % A, 5.0 min - 97 % A (flux 2000 µL min⁻¹).

The mass spectrometer was operated as described in Victorio et al.¹², in resolution mode (35,000 FWHM), using a nano-electrospray ionization in the positive ion mode and a NanoLockSpray (Waters, Manchester, UK) ionization source. Ions with mass between 50 and 2.000 Da were acquired within 0.5 second scanning time, with a transfer ramp and collision energy of 19 V to 55 V.

Proteomic data analysis. The Progenesis QI for Proteomics (v 2.1, Nonlinear Dynamics; Waters, 114 Newcastle, UK) software was used to process and search proteins, using a label-free methodology, 115 with an Orchidaceae database proteins, noted in UniProt online program (UniProt -116 http://www.uniprot.org) in FASTA form. The Uniprot Orchidaceae database released in 2017 03, with 117 118 26,899 reviewed entries was used. The parameters for database searching were: one missed cleavage, minimum fragment ion/ peptide equal to one, minimum fragment ion/ protein equal to three, 119 minimum peptide/ protein equal to one, fixed modifications of carbamidomethyl C, variable 120 modifications of oxidation M and phosphoryl STY, and a default false discovery rate (FDR) maximum 121

of 4%. The parameters set as default were peptide mass error of tolerance greater than 10 ppm,
 maximum protein mass of 600 KDa, fragment mass error tolerance of 20 ppm and score less than 4.
 Relative quantification was determined from the absolute intensities with the use of ion accounting Hi3
 based quantification methods. The homologies were processed and homology filters quantification
 were performed by the software according to Li et al.¹³.

Proteomics data processing and statistical analysis. The multiple sample test (ANOVA) with Tukey test ($p \le 0.05$) was used in Bradford quantification data and protein relative quantitative analyses. Proteins that were present in, at least, two of the three technical replicates, and with a coefficient of variation (CV) ≤ 0.4 were considered as successfully identified. The cellular component and biological process annotation were performed using UniProtKB taxonomic.

Vanillin, pyrogallol and p-coumaric acid extraction and absolute quantification. One hundred milligrams of dry fruit were extracted with 15 mL of methanol (MeOH) in ultrasonic cleaner bath for 30 min, and evaporated. The samples were resuspended with 4 mL of MeOH. The experiments were performed in duplicate. The extracts were passed through a 25 mm PTFE 0.45 µL syringe filter prior to injection (20 µL) into the HPLC system, in technical triplicate.

The samples were analyzed on an HPLC-DAD Shimadzu Prominence system fitted with a LC-137 20AT pump module, a SPD- M20A diode array detector, a CBM-20A control center, a SIL-10A 138 Autosampler injector, and a CTO-20A oven (Shimadzu, Japan). Data analysis were performed using 139 LC Solution software (Shimadzu, Japan). The column used was a Betasil RP - 18 (250 x 4.6 mm, 5 140 µm, Thermo Fisher Scientific, Runcorn, UK), and the mobile phase was water-acetic acid (99: 1, 141 solvent A) and B (acetonitrile). Elution was performed at a flow rate of 1 ml min-1 using a gradient 142 143 starting with 35% B increasing to levels of 80% B at 7 min and 35% B at 11 min to re-equilibrate the column. The compounds were monitored at: 270 nm for vanillin and pyrogallol and 310nm for p-144 coumaric acid. The identification of the compounds was performed through the comparison of retention 145

time and ultraviolet spectrum between the samples and the controls (standard), and quantification wasperformed using external calibration data for the same compounds.

148 **Results and Discussion**

Selection of the extraction solution. Proteomics remains a challenge in recalcitrant plant tissues, 149 150 like in fruits, and the stages of protein extraction and sample preparation are critical to eliminate 151 interfering substances and to achieve high protein content. Protein protocols applying phenol solutions have been reported to be suitable for the extraction of low concentrations of protein in fruits^{14–16}. Some 152 153 of the limitations of phenol-based protocols are the lack of detergents in the extraction buffer, the need of many steps with too much sample manipulation and the high toxicicity¹⁵. On the other hand, the 154 155 SDS containing procedures have been reported to be a viable alternative when a secondary clean-up 156 step is applied¹⁷. In this study, six different non-phenol-based extraction conditions were tested (Figure S1). 157

According to our results, samples Vb5 (1% SDS) and Vb3 (β-MT + 1% SDS) contained significantly 158 more total protein extracted and higher protein diversity than the other samples (Figure 1A, B), thus 159 the addition of β-MT and 1% of SDS in the extraction solution was successful to obtain better protein 160 solubilization when compared to other extraction solutions (Figure 1A). However, the presence of β-161 162 MT interfered with the SDS, resulting in the loss of proteins (Figure 1A, B). On the other hand, no SDS signal was found in the mass spectrum, meaning that the washing procedure with ammonium 163 bicarbonate removed the detergent, as suggested by Garrido¹⁸. Samples Vb4 and Vb6 (0.1% of SDS) 164 were able to extract only little concentrations of proteins (Figure 1A) and were not used in further 165 166 evaluations of the extracted protein diversity (Figure 1B).

Figure 1. A – Total protein in μ g μ L⁻¹ (mean ± SD). The data were analyzed using Statistics software v 7.0. The ANOVA with *p* < 0.05 was used, followed by the Tukey test. The same letters mean no statistical significance. B- Venn diagram compares the number of unique and common proteins identified in the dataset between extraction solutions. It shows the overlaps between proteins identified in each of the extraction condition.

173 The use of chemical reducers and detergents usually causes the opening of the protein's structure 174 facilitating the protein elution and leading to greater amount and variety of proteins in solution^{19,20}. However, according to Anand et al.²¹, the presence of a reducing agent may interfere with the anionic 175 176 surfactant. Although SDS is known to cause a better solubilization of proteins improving phase 177 separations and protein recovery, it was also reported as a problem for ESI-based analytical methods, 178 as its presence in the samples can lead to ion suppression and significantly reduce the number of peptides identifications^{18,22}. Usually, methods applying SDS depend on different tactics to remove the 179 180 detergent prior to ionization. The present strategy seemed to be less time consuming and less damaging to proteins than the most common methods (precipitation with organic solvents, column 181 based approaches, dialysis)²³. 182

A total of 2326 proteins were collectively identified (**Table S1**) and the presence of SDS allowed the extraction of more diverse proteins, with 1704 identified in Vb5 and 1290 in Vb3 (**Figure 1B**). It was also possible to observe a similarity between Vb5 and Vb3 (with 829 proteins in common) both
186 conditions with 1% SDS (Figure 1B). Regarding biological process, most of the proteins were related to the biosynthetic process of organic substance. Vb5 was the extraction condition with highest 187 188 biological process diversity. The Vb1 condition extracted proteins with less biological process diversity 189 (Figure 2). Usually, SDS shows the ability to extract hydrophobic membrane proteins not readily soluble in water, resulting in a more complete protein sampling^{24,25}. However, according to the cellular 190 localization, a similar profile was observed among all conditions: most proteins extracted were located 191 in the plastids, followed by proteins located in the intrinsic component of the membrane. In this case 192 the use of SDS did not significantly improve the extraction of membrane proteins (Figure S2). 193 194 According to Gallage et al.²⁶ the vanillin synthase location, an important enzyme for vanillin biosynthesis, was restricted to plastids. 195

207 To date, proteomics data of the Vanilla genus are restricted to in vitro development of V. planifolia which focused on apical buds and calluses, identifying proteins related to embryogenesis^{27–30}. The 208 209 extraction protocols followed by these authors, without SDS or any other detergent, lead to the identification of roughly ten times less proteins than the present study. In Gallage et al.'s³ study, only 210 211 proteins related to five major enzymes families involved in the vanillin biosynthesis were identified. The larger the identified proteome is, the greater the chances of identifying proteins that can serve as 212 markers for molecules of interest. This would enable the improvement of nutritional quality, taste and 213 214 resistance or tolerance to diseases¹⁴. In the present work it was possible to identify a wide diversity of proteins related to vanilla flavor production, and to flowering and fruitening, therefore our extraction 215 216 method can also be a good alternative to Vanilla's protein extraction.

Identified proteins and classification. The taxonomic data obtained from UniprotKb showed that
 88% of the identified proteins belong to the Vanilleae group and from this, 67% were related to *V*.
 planifolia (Figure 3).

220

Figure 3. Taxonomy information from UniProt annotation results from identified proteins of Vanilla

222 spp.

The group of identified proteins related to flowering and fruitening presented the highest protein diversity (**Figure 4**) in which 103 proteins were related to the development of flowers and 32 were related to fruit development (**Table S2** and **S3**). Most of these proteins were present in Vb3 and Vb5 rather than in Vb1 and Vb2 (**Figure 5**).

227

Figure 4. Identification results from nanoUPLC-MS/MS analysis showing the number of proteins
 identified in the dataset between extraction solutions that are involved in phenols, terpenes, flowering
 and fruiting.

Amongst the identified proteins, were found the following mads-box group proteins, previously 231 reported in Vanilloideae³² and peach³³: 1 protein from agamous (AG), 13 deficiens (DEF), 1 pistillata 232 (PI), 2 apetala (AP), 1 domads1 (DOM1), 1 sepallata (SEP) and 5 squamosa (SQUA). These proteins 233 234 have diverse functions: encoded transcription factors that controls the development of the floral reproductive organ³⁴ and in the regulation of fruit development³⁵ (AG), mainly in V. planifolia³² (DOM1); 235 controls the growth and development of petals and stamens from A, B and C of floral ABCDE, and 236 contribute to floral identity ^{36,37} (DEF, PI, AP and AG); determines the flower and floral meristem³⁸ (the 237 SEP group proteins, like sepallata-like mads-box protein 4); regulates transition phase, flower and fruit 238

development, plant structure, gibberellin signaling and sporogenesis³⁹ (SQUA proteins and
 transcription factor TCP4) and regulates the onset of flowering through photoperiodism and the
 circadian cycle in response to long days⁴⁰ (7 CO-like proteins) (**Table S2**).

Specifically LFY is a master regulator, controlling the entire floral network, like mads-box group⁴¹.
 LFY proteins were not previously identified in the *Vanilla* genus, however the 12 LFY-like protein
 OrcLFY was identified in this experiment (**Table S2**).

Maturation and abscission processes in *Orchidaceae* are still unknown. Valadares et al.⁴² showed an accumulation of ACC synthase and other ethylene biosynthesis related proteins in green protocorms of *Oncidium sphacelatum* in response to stress. The following ethylene pathway⁴³ related proteins were identified in the samples of *V. bahiana*: aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC oxidase, ethylene insensitive 3 and ethylene response sensor 2. The putative ethylene response factor was observed in *Oncidium*⁴⁴, this protein presents an important role in fruit ripening, flower senescence and abscission⁴⁵ (**Tables S3**).

252 In this present study, 24 proteins intrinsically related to phenolic biosynthesis⁴⁶ were found:14 proteins of chalcone synthase, 2 chalcone-flavonone isomerase, 1 flavanone-3-hydroxylase (f3h), 1 253 flavonoid-3-hydroxylase, 4 flavonoid 3'5'hydroxylase, 1 flavonol synthase and 1 o-methyltransferase-254 255 2 (**Table S4**). These proteins had higher abundance in Vb5 or Vb3 with a wider dynamic range than 256 in Vb1 e Vb2 (Figura 5, Figure 6C, Table S4, Figure S3C, Figure S4C, Figure S5C). Most of the previously mentioned proteins are enzymes related to the biosynthesis of compounds that belong to 257 the vanilla flavor, like: chalcone synthase involved on naringenin biosynthesis⁴⁶ and dihydroflavonol 4-258 reductases related to the biosynthesis of dihydroflanols⁴⁷ and of v-myb myeloblastosis (MYB), 259 260 transcription factors key protein regulator of the synthesis of phenylpropanoid-derived compounds^{32,33}.

Figure 5. Heat map of the proteins identified and selected, with the ANOVA pvalue<0.05. Symbols were used for classification. Star – Phenol pathway; circle – Flowering; diamond – Fruitening and cross – Terpene. According to the literature, some enzymes families are involved specifically in vanillin biosynthesis³.

In the preset study, most of these proteins were identified: 12 phenylalanine ammonia lyase (PAL) and

MYB, 7 related to cytochrome p450s family and 4 related to o-methyltransferases (OMTs) (Figura 5,

Figure 6C, Table S4, Figure S3, Figure S4C, Figure S5C).

275 MYB transcription factor family regulates various stages of phenol production pathway and are 276 necessary for the activation of the gene that produces the chalcone synthase enzyme, as well as the 277 activation of the gene that produces PAL⁴⁸. A recent study verified the direct action of MYB 278 transcription factor on the metabolism of flavonoids and phenylpropanoids⁴⁹.

The OMT and PAL enzymes were characterized in cured and uncured fruits of *V. planifolia* and were responsible for transforming caffeic acid directly into ferulic acid³. The caffeic acid omethyltransferase, found in Vb1 and Vb3 extraction (**Figure 5**, **Table S4**, **Figure S3C**, **S5C**), participates in the biosynthesis of caffeic acid^{3,50,51}.

Eugenol synthase was also identified (**Figure 5**, **Figure 6C**, **Table S4**, **Figure S3C**, **S4C**, **S5C**), a protein responsible for the biosynthesis of eugenol described in vanilla flavor and in vanillin pathway. This compound is bioconverted into ferulic acid by microorganisms in the curing process of vanilla beans⁵².

One of the most important findings of the current work was the identification of vanillin synthase, significantly more abundant in Vb3 extraction than in Vb5 and better positioned in the dynamic range (**Figure 5**, **Figure 6C**, **Table S4**, **Figure S5C**). This enzyme, described by Gallage et al.³ as the most relevant enzyme for vanillin biosynthesis, belong to the non-CoA-dependent non- β -oxidation transformation of ferulic acid into vanillin. This pathway is still one of the more accepted via for vanillin biosynthesis⁵¹ with vanillin synthase being the only enzyme that converts ferulic acid and its glycoside into vanillin and its glycoside^{3,50}.

Figure 5. Dynamic range of proteins identified in the dataset of the *V. bahiana*'s bean for Vb5 extraction condition. A- flowering; B- fruitening; C-phenolic and D- terpene pathway. The median absolute expression value of each protein revealing the typical S-shaped distribution over the mean abundance orders of dynamic range. The most abundant proteins (left) and the lowest abundance (right).

Some terpenes have been described as part of the vanilla essential oil and flavor present in *Vanilla* spp., such as: limonene, linalool, terpinen-4-ol, α -pinene, α -terpineol and β -pinene^{7,53}. In our work, we were able to find some proteins related to these compounds' biosynthesis⁵⁴, such as: terpene synthase, 1-deoxy-D-xylulose-5-phosphate synthase (Fragment), allene oxide synthase, 3-hydroxy-3methylglutaryl coenzyme A reductase and 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (**Figure 5**, **Figure 6D**, **Figure S3D**, **S4D**, **S5D**). All of them were present and/or had higher abundance in Vb5 (**Figure 5**, **Figure 6D**, **Table S5**).

The mevalonate kinase, statistically more abundant in Vb3 than Vb5 (**Figure 5**, **Figure 6D**, **Figure S5D**, **Table S5**), is the first enzyme to act right after HMG-CoA in the mevalonate pathway ⁵⁵ and it is related to the same pathway of 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl compound, that can be cleaved into vanillin and acetyl-CoA⁵⁶.

Quantification of key vanilla flavor compounds. To validate the presence of some phenolic 311 312 compounds in V. bahiana samples, vanillin, p-coumaric acid and pyrogallol were extracted and quantified (Table 1). According to Perez-Silva et al.⁵⁷, acids and phenolic compounds were 313 characteristic predominates in V. planifolia cured fruit extracts, being vanillin the main phenolic 314 315 compound. Was guantified 1.55 mg/g of dried extract of vanillin (Table 1). The vanillin and related phenolic compounds in cured Vanilla spp. pods can be an important indicators of fruit and extract 316 guality and origin⁵⁸. According to Gallage and Møller⁵⁹ vanillin in the mature fruit has high 317 concentrations, 1kg of vanillin per 500kg of vanilla fruit, and cannot be compared to any other known 318 organism in nature. The comparison of the amount of vanillin per g of dried fruit obtained in our study 319

320 was compared to the other studies already published and the results are in Table 2. We observed that 321 the differences between the vanillin content in the present work and those cited in the literature were 322 at most approximately 0.02g/g of dry fruit. The p-coumaric acid is an important precursor of vanillin in fruit and cell cultures of V. planifolia and in V. tahitensis pod^{29,47,60}. The following proteins, identified in 323 the samples, are supposed to take part in its biosynthetic pathway³: PAL and cytochrome p450s family 324 proteins like Flavonoid 3'-hydroxylase (Figure 5, 6D e material suplementar). Other phenolic 325 compound quantified was pyrogallol, the most abundant, that was previously identified in the flavor of 326 V. planifolia⁵³ and in V. tahitensis pod⁴⁷ (Table 1). 327

- 328
- **Table 1.** Mean quantification of vanillin, p-coumaric acid and pyrogallol.

	Compound	Mean concentration (mg/g)*
	Vanillin	1.55 ± 0.00**
	p-coumaric acid	0.18 ± 0.00
	Pyrogallol	297.42 ± 7.72
**Mean	± Standard deviations	
* Dry ex	tract	

Table 2. Comparation of vanillin content in fruit of *Vanilla spp.* according to literature.

Literature	Species	Vanillin Content (g/g of dry extract)	Vanillin content (g/g of dry fruit)
Present study	V. bahiana	0.0015	0.0155
Calva-Estrada et al, 2017	_*	0.0161	-
Wongsheree et al. 2013	V. planifolia	-	0.0368
Kumar et al. 2010	V. planifolia	-	0.0266
Gassenmeier et al, 2008	V. planifolia**	-	0.0245
Gassenmeier et al, 2008	V. planifolia***	-	0.0086
Sagrero-Nives & Schwartz, 1988	V. planifolia	0.0113	-

*natural Vanilla extract/ ***V. planifolia* extract from Madagascar, Red non-Split color type/ *** *V. planifolia* extract from Madagascar, cuts shape type

333

The *V. bahiana* pod seems to be an alternative source of the natural vanilla extract since it proved to express some of the most important enzymes in the biosynthesis of the vanilla flavor compounds and produces vanillin. The extraction, digestion, acquisition and identification methods in MS used were adequate (**Figure S6 – S9**). The use of 1% of SDS was important, not only for the extraction of the most abundant proteins, in a wide dynamic range, but also for the extraction of a great protein diversity indicating that this could be used in protein studies of other *Vanilla spp.* pods.

340 Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for master's scholarship; to Dr. Andrés Rodríguez Veja from PPGAN/UNIRIO, to Dr. André Ferreira from Oswaldo Cruz Foundation (FIOCRUZ) and to Gustavo Souza from Waters Corporation for logistical and technical support. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), number 2010.3553.8, and Universidade Federal do Estado do Rio de Janeiro (Unirio).

348

349

- 350
- 351
- 352
- 353

354

356 References

- Pansarin, E.; Aguiar, J.; Ferreira, Al. A new species of Vanilla (Orchidaceae : Vanilloideae)
 from São. New York Bot. Gard. Press 2012, 64 (June), 157–161.
- 359 (2) Divakaran, M.; Babu, K. N.; Peter, K. V. Conservation of Vanilla species, in vitro. *Sci. Hortic.*360 (*Amsterdam*). 2006, *110* (2), 175–180.
- 361 (3) Gallage, N. J.; Hansen, E. H.; Kannangara, R.; Olsen, C. E.; Motawia, M. S.; Jørgensen, K.;
- Holme, I.; Hebelstrup, K.; Grisoni, M.; Møller, B. L. Vanillin formation from ferulic acid in
- Vanilla planifolia is catalysed by a single enzyme. *Nat. Commun.* **2014**, 5 (May), 4037.
- 364 (4) Hrazdina, G. Aroma Production by Tissue Cultures Aroma Production by Tissue Cultures. *J.* 365 Agric. Food Chem. 2006, 54 (February), 1116–1123.
- Greule, M.; Mosandl, A.; Hamilton, J. T. G.; Keppler, F. Comment on Authenticity and
 Traceability of *Vanilla* Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen. *J.*
- 368 *Agric. Food Chem.* **2015**, 63 (21), 5305–5306.
- (6) Koyyappurath, S.; Atuahiva, T.; Le Guen, R.; Batina, H.; Le Squin, S.; Gautheron, N.; Edel
- Hermann, V.; Peribe, J.; Jahiel, M.; Steinberg, C.; et al. Fusarium oxysporum f. sp. radicis-
- vanillae is the causal agent of root and stem rot of vanilla. *Plant Pathol.* 2016, 65 (4), 612–
 625.
- 373 (7) Anuradha, K.; Shyamala, B. N.; Naidu, M. M. Vanilla- Its science of cultivation, curing,
- 374 chemistry, and nutraceutical properties. *Crit. Rev. Food Sci. Nutr.* **2013**, 53 (12), 1250–1276.
- 375 (8) Naidu, M. M.; Kumar, P. V. S.; Shyamala, B. N.; Sulochanamma, G.; Prakash, M.; Thakur, M.
- 376 S. Enzyme-Assisted Process for Production of Superior Quality Vanilla Extracts from Green
- Vanilla Pods Using Tea Leaf Enzymes. *Food Bioprocess Technol.* **2012**, 5 (2), 527–532.
- 378 (9) Botânico, J. Arquivos do Jardim botânico do Rio de Janeiro; 1915; Vol. XVIII.
- Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of
 protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, 72 (1–2), 248–254.

381	(11)	Lobo, M. D. P.; Moreno, F. B. M. B.; Souza, G. H. M. F.; Verde, S. M. M. L.; Moreira, R. de
382		A.; Monteiro-Moreira, A. C. de O. Label-Free Proteome Analysis of Plasma from Patients with
383		Breast Cancer: Stage-Specific Protein Expression. Front. Oncol. 2017, 7 (February), 1–12.
384	(12)	Victorio, V. C. M.; Souza, G. H. M. F.; Santos, M. C. B.; Vega, A. R.; Cameron, L. C.;
385		Ferreira, M. S. L. Differential expression of albumins and globulins of wheat flours of different
386		technological qualities revealed by nanoUPLC-UDMSE. Food Chem. 2018, 239, 1027–1036.
387	(13)	Li, G. Z.; Vissers, J. P. C.; Silva, J. C.; Golick, D.; Gorenstein, M. V.; Geromanos, S. J.
388		Database searching and accounting of multiplexed precursor and product ion spectra from
389		the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9
390		(6), 1696–1719.
391	(14)	Song, J.; Braun, G. Application of Proteomic Techniques to Fruits and Vegetables. Curr.
392		Proteomics 2008 , 5 (3), 191–201.
393	(15)	Zhang, S.; Zhang, LL.; Zhou, KK.; Liu, YJ.; Zhao, Z. Evaluation of three types of protein
394		extraction methods for tetraploid black locust (Robinia pseudoacacia L.) phloem tissue
395		proteome analysis by two-dimensional electrophoresis. Anal. Methods 2015, 7, 1008–1017.
396	(16)	Tamayo Tenorio, A.; Boom, R. M.; van der Goot, A. J. Understanding leaf membrane protein
397		extraction to develop a food-grade process. Food Chem. 2017, 217, 234–243.
398	(17)	Capriotti, A. L.; Cavaliere, C.; Piovesana, S.; Stampachiacchiere, S.; Ventura, S.; Zenezini
399		Chiozzi, R.; Laganà, A. Characterization of quinoa seed proteome combining different protein
400		precipitation techniques: Improvement of knowledge of nonmodel plant proteomics. J. Sep.
401		Sci. 2015 , 38 (6), 1017–1025.
402	(18)	Garrido, B. C.; Souza, G. H. M. F.; Lourenço, D. C.; Fasciotti, M. Proteomics in quality
403		control: Whey protein-based supplements. J. Proteomics 2016, 147, 48–55.
404	(19)	Wilson, K.; Walker, J. Principles and techniques of biochemistry and molecular biology; 2010.
405	(20)	Chengang, R.; Lu, T.; Min, Z.; Shuntang, G. Structural characterization of heat-induced

406		protein particles in soy milk. J. Agric. Food Chem. 2009, 57 (5), 1921–1926.
407	(21)	Anand, U.; Ray, S.; Ghosh, S.; Banerjee, R.; Mukherjee, S. Structural Aspects of a Protein-
408		Surfactant Assembly: Native and Reduced States of Human Serum Albumin. Protein J. 2015,
409		34 (2), 147–157.
410	(22)	Capriotti, A. L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Stampachiacchiere, S.; Zenezini
411		Chiozzi, R.; Laganà, A. Protein profile of mature soybean seeds and prepared soybean milk.
412		J. Agric. Food Chem. 2014 , 62 (40), 9893–9899.
413	(23)	Botelho, D.; Wall, M. J.; Vieira, D. B.; Fitzsimmons, S.; Liu, F.; Doucette, A. Top-down and
414		bottom-up proteomics of sds-containing solutions following mass-based separation. J.
415		Proteome Res. 2010 , 9 (6), 2863–2870.
416	(24)	Liu, Y.; Lin, Y.; Yan, Y.; Li, J.; He, Q.; Chen, P.; Wang, X.; Liang, S. Electrophoretically driven
417		SDS removal and protein fractionation in the shotgun analysis of membrane proteomes.
418		Electrophoresis 2012 , 33 (2), 316–324.
419	(25)	Lin, Y.; Jiang, H.; Yan, Y.; Peng, B.; Chen, J.; Lin, H.; Liu, Z. Shotgun analysis of membrane
420		proteomes by an improved SDS-assisted sample preparation method coupled with liquid
421		chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life
422		<i>Sci.</i> 2012 , <i>911</i> , 6–14.
423	(26)	Gallage, N. J.; Jørgensen, K.; Janfelt, C.; Nielsen, A. J. Z.; Naake, T.; Duński1, E.; Møller, B.
424		L.; Grisoni, M.; Dalsten, L. The Intra-Cellular Localization of the Vanillin Biosynthetic
425		Machinery in Pods of Vanilla planifolia Running head : Vanillin biosynthesis in chloroplasts
426		The Intra-Cellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla
427		planifolia. 2017 , No. November.
428	(27)	Tan, B. C.; Chin, C. F.; Liddell, S.; Alderson, P. Protein extraction for callus and node cultures
429		of Vanilla planifolia Andrews. Minerva Biotecnol. 2014, 26 (July), 115–126.

430 (28) Guerrero, A.; Valdés-Rodríguez, S. .; Durán-Sánchez, B.; González-Arnao, M. .; Jiménez-

431		Francisco, B.; Lázaro-Vallejo, C Cryopreservation and Proteomic Analysis of Vanilla (V .
432		planifolia A .) Apices Treated with Osmoprotectants. Acta Hortic. 2011, No. 908, 67–72.
433	(29)	Palama, T. L.; Menard, P.; Fock, I.; Choi, Y. H.; Bourdon, E.; Govinden-Soulange, J.; Bahut,
434		M.; Payet, B.; Verpoorte, R.; Kodja, H. Shoot differentiation from protocorm callus cultures of
435		Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC
436		<i>Plant Biol.</i> 2010 , <i>10</i> , 82.
437	(30)	Tan, B. C.; Chin, C. F.; Liddell, S.; Alderson, P. Proteomic Analysis of Callus Development in
438		Vanilla planifolia Andrews. Plant Mol. Biol. Report. 2013, 31 (6), 1220–1229.
439	(31)	Villanueva-Viramontes, S.; Hernández-Apolinar, M.; Carnevali Fernández-Concha, G.;
440		Dorantes-Euán, A.; Dzib, G. R.; Martínez-Castillo, J. Wild Vanilla planifolia and its relatives in
441		the Mexican Yucatan Peninsula: Systematic analyses with ISSR and ITS. Bot. Sci. 2017, 95
442		(2), 169–187.
443	(32)	Acri-Nunes-Miranda, R.; Mondragón-Palomino, M. Expression of paralogous SEP-, FUL-,
444		AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front.
445		<i>Plant Sci.</i> 2014 , 5 (March), 76.
446	(33)	Tani, E.; Polidoros, A. N.; Flemetakis, E.; Stedel, C.; Kalloniati, C.; Demetriou, K.; Katinakis,
447		P.; Tsaftaris, A. S. Characterization and expression analysis of AGAMOUS-like,
448		SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.
449		Plant Physiol. Biochem. 2009 , 47 (8), 690–700.
450	(34)	Honma, T.; Goto, K. Complexes of MADS-box proteins are sufficient to convert leaves into
451		floral organs. <i>Nature</i> 2001 , <i>409</i> (6819), 525–529.
452	(35)	Roy Choudhury, S.; Roy, S.; Nag, A.; Singh, S. K.; Sengupta, D. N. Characterization of an
453		AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening
454		Regulatory System in Banana. PLoS One 2012, 7 (9).
455	(36)	Kramer, E. M.; Dorit, R. L.; Irish, V. F. Molecular evolution of genes controlling petal and

- 456 stamen development: Duplication and divergence within the APETALA3 and PISTILLATA
- 457 MADS-box gene lineages. *Genetics* **1998**, *149* (2), 765–783.
- 458 (37) Melzer, R.; Härter, A.; Rümpler, F.; Kim, S.; Soltis, P. S.; Soltis, D. E.; Theißen, G. DEF- and
- 459 GLO-like proteins may have lost most of their interaction partners during angiosperm
- 460 evolution. Ann. Bot. **2014**, *114* (7), 1431–1443.
- 461 (38) Wong, C. E.; Singh, M. B.; Bhalla, P. L. Novel members of the AGAMOUS LIKE 6 subfamily
 462 of MIKCC-type MADS-box genes in soybean. *BMC Plant Biol.* 2013, *13* (1), 105.
- 463 (39) Preston, J. C.; Hileman, L. C. Functional Evolution in the Plant SQUAMOSA-PROMOTER
 464 BINDING PROTEIN-LIKE (SPL) Gene Family. *Front. Plant Sci.* 2013, *4*.
- 465 (40) Valverde, F. Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering.
- 466 Science (80-.). **2004**, 303 (5660), 1003–1006.
- 467 (41) Lu, S.; Li, Z.; Zhang, J.; Yi, S.; Liu, L.; Bao, M.; Liu, G. Isolation and expression analysis of a
- 468 LEAFY/FLORICAULA homolog and its promoter from London plane (Platanus acerifolia
 469 Willd.). *Plant Cell Rep.* 2012, *31* (10), 1851–1865.
- 470 (42) Valadares, R. B. S.; Perotto, S.; Santos, E. C.; Lambais, M. R. Proteome changes in
- 471 Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.
- 472 *Mycorrhiza* **2014**, 24 (5), 349–360.
- 473 (43) Pilati, S.; Perazzolli, M.; Malossini, A.; Cestaro, A.; Demattè, L.; Fontana, P.; Dal Ri, A.; Viola,
- 474 R.; Velasco, R.; Moser, C. Genome-wide transcriptional analysis of grapevine berry ripening
- 475 reveals a set of genes similarly modulated during three seasons and the occurrence of an
 476 oxidative burst at veraison. *BMC Genomics* 2007, 8 (1), 428.
- 477 (44) Lashbrook, C. C.; Giovannoni, J. J.; Hall, B. D.; Fischer, R. L.; Bennett, A. B. Transgenic
- analysis of tomato endo-β-1,4-glucanase gene function. Role of cel1 in floral abscission. *Plant J.* **1998**, *13* (3), 303–310.
- 480 (45) Bäurle, I.; Dean, C. The Timing of Developmental Transitions in Plants. Cell 2006, 125 (4),

- 655–664.
- 482 (46) Li, X.; Jackson, A.; Xie, M.; Wu, D.; Tsai, W. C.; Zhang, S. Proteomic insights into floral
 483 biology. *Biochim. Biophys. Acta Proteins Proteomics* 2016, *1864* (8), 1050–1060.
- 484 (47) Busconi, M.; Lucini, L.; Soffritti, G.; Bernardi, J.; Bernardo, L.; Brunschwig, C.; Lepers-
- 485 Andrzejewski, S.; Raharivelomanana, P.; Fernandez, J. A. Phenolic Profiling for Traceability
- 486 of Vanilla ×tahitensis. *Front. Plant Sci.* **2017**, 8 (October), 1–13.
- 487 (48) Liu, J.; Osbourn, A.; Ma, P. MYB transcription factors as regulators of phenylpropanoid
 488 metabolism in plants. *Mol. Plant* 2015, *8* (5), 689–708.
- 489 (49) Medina-Puche, L.; Cumplido-Laso, G.; Amil-Ruiz, F.; Hoffmann, T.; Ring, L.; Rodríguez-
- 490 Franco, A.; Caballero, J. L.; Schwab, W.; Muñoz-Blanco, J.; Blanco-Portales, R. MYB10
- 491 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening
 492 of Fragaria × ananassa fruits. *J. Exp. Bot.* **2014**, 65 (2), 401–417.
- 493 (50) Negishi, O.; Negishi, Y. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the
- 494 ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia. *Biosci.*
- 495 Biotechnol. Biochem. **2017**, 81 (9), 1732–1740.
- (51) Kundu, A. Vanillin biosynthetic pathways in plants. *Planta* **2017**, 245 (6), 1069–1078.
- 497 (52) Havkin-frenkel, D.; Belanger, F. C. Biotechnological production of vanillin (Priefert 2001).pdf.
 498 2016, 1–121.
- (53) Zhang, S.; Mueller, C. Comparative analysis of volatiles in traditionally cured Bourbon and
 Ugandan vanilla bean (Vanilla planifolia) extracts. *J. Agric. Food Chem.* 2012, 60 (42),
 10433–10444.
- 502 (54) Anuradha, K.; Shyamala, B. N.; Naidu, M. M. Vanilla--its science of cultivation, curing,
- 503 chemistry, and nutraceutical properties. *Crit. Rev. Food Sci. Nutr.* **2013**, 53 (12), 1250–1276.
- 504 (55) Bouvier, F.; Rahier, A.; Camara, B. Biogenesis, molecular regulation and function of plant
 505 isoprenoids. *Prog. Lipid Res.* 2005, 44 (6), 357–429.

506	(56)	Świzdor, A.; Panek, A.; Milecka-Tronina, N.; Kołek, T. Biotransformations utilizing β -oxidation
507		cycle reactions in the synthesis of natural compounds and medicines. Int. J. Mol. Sci. 2012,
508		<i>13</i> (12), 16514–16543.
509	(57)	Pérez-Silva, a.; Odoux, E.; Brat, P.; Ribeyre, F.; Rodriguez-Jimenes, G.; Robles-Olvera, V.;
510		García-Alvarado, M. a.; Günata, Z. GC-MS and GC-olfactometry analysis of aroma
511		compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G.
512		Jackson) beans. Food Chem. 2006, 99 (4), 728–735.
513	(58)	Sharma, U. K.; Sharma, N.; Gupta, A. P.; Kumar, V.; Sinha, A. K. RP-HPTLC densitometric

- 514 determination and validation of vanillin and related phenolic compounds in accelerated
- solvent extract of Vanilla planifolia. *J. Sep. Sci.* **2007**, *30* (18), 3174–3180.
- (59) Gallage, N. J.; Møller, B. L. Vanillin–Bioconversion and Bioengineering of the Most Popular
 Plant Flavor and Its De Novo Biosynthesis in the Vanilla Orchid. *Mol. Plant* 2015, *8* (1), 40–
 518 57.
- Gu, F.; Chen, Y.; Hong, Y.; Fang, Y.; Tan, L. Comparative metabolomics in vanilla pod and
 vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla. *AMB Express* 2017, 7 (1), 116.

	Supplementary Figure 2.
	Cellular component
	annotated from UniProtKB
	for the identified protein. (A)
	proteins from Vb1
 macromolecular complex intrinsic component of membrane 	extraction condition. (B)
 extrinsic component of membrane membrane 	Vb2 extraction condition.
⊟ plastid ■ nucleus	(C) Vb3 extraction
mitochondrion	condition. (D) Vb5
⊡ ribosome ⊞ extracellular region	extraction condition.

Supplementary Figure 3. Dynamic range of proteins identified in the dataset of the *V. bahiana*'s bean for Vb1 extraction condition. A- flowering; B- fruitening; C-phenolic and D- terpene pathway. The median absolute expression value of each protein revealing the typical S-shaped distribution over the mean abundance orders of dynamic range. Proteins with higher abundance are located in the left side of the graph and the ones with the lowest abundance are located in the right side.

Supplementary Figure 4. Dynamic range of proteins identified in the dataset of the *V. bahiana*'s bean for Vb2 extraction conditionA- flowering; B- fruitening; C-phenolic and D- terpene pathway. The median absolute expression value of each protein revealing the typical S-shaped distribution over the mean abundance orders of dynamic range. Proteins with higher abundance are located in the left side of the graph and the ones with the lowest abundance are located in the right side.

Supplementary Figure 5. Dynamic range of proteins identified in the dataset of the *V. bahiana*'s bean for Vb3 extraction condition. A- flowering; B- fruitening; C-phenolic and D- terpene pathway. The median absolute expression value of each protein revealing the typical S-shaped distribution over the mean abundance orders of dynamic range. Proteins with higher abundance are located in the left side of the graph and the ones with the lowest abundance are located in the right side.

562 **Supplementary Figure 6**. Number of proteins identified present in two of the three and three of the 563 three technical replicates, with FDR calculated. Most of the proteins were identified in the three

technical replicates.

Supplementary Figure 7. Mass error distribution of *V. bahiana*. The normal distribution of mass

569 cleavages were around zero.

Supplementary Figure 9. Mean number of peptides/protein of *V. bahiana* data, with an average 6

⁵⁷² peptides/ protein.

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [₌]	Protein names	Organism
A0A076N468	Vb2, Vb3	8	2	0.00*	Vb3	27257.2±1549.9	AG-like MADS box protein	Oncidium hybrid cultivar
A0A088BJD5	Vb2, Vb3	3	1	0.00*	Vb3	2958.2±251.5	LEAFY-like protein (Fragment)	Dendrobium tosaense
A0A088BJT1	Vb1, Vb3, Vb5	Vb1, Vb3, 4 1 0.53 Vb1 3976.6±223.9 LEAFY-like protein (Fragmen Vb5		LEAFY-like protein (Fragment)	Dendrobium lindleyi			
A0A088BK18	Vb3, Vb5	8	1	0.00*	Vb5	Vb5 3987.7±1082.5 LEAFY-like protein (Fragment)	Dendrobium hercoglossum	
A0A097PAK0	Vb3, Vb5	2	1	0.08	3 Vb5 506.8±25.1 TFL1	TFL1	Oncidium hybrid cultivar	
A0A0A0QXJ4	Vb3, Vb5	8	4	0.18	Vb5	1092.8±157.5	Class A MADS-domain transcription factor (Fragment)	Gongora galeata
A0A0A0R216	Vb3, Vb5	3	1	0.00*	Vb5	Vb5 128033.5±10450. Class E MADS-domain 7 transcription factor (Fragment)	Class E MADS-domain transcription factor (Fragment)	Vanilla planifolia (Vanilla)
A0A0A0R219	ALL	12	2	0.00*	0.00* Vb3 27007.9±844 Class C MADS-domain transcription factor (Fragment)	Class C MADS-domain transcription factor (Fragment)	Gongora galeata	
A0A0A6Z8D3	Vb1, Vb2, Vb3	9	4	0.00*	Vb2 378765.1±69634. MADS box transcription factor 4 SEP1	Paphiopedilum concolor		
A0A0D3QNZ5	Vb3, Vb5	7	4	0.85	Vb5	14354.5±2841.6	MADS-box protein 28 (MADS28)	Erycina pusilla
A0A0D3RI62	Vb3, Vb5	7	3	0.00*	Vb3	3293.2±1129.2	Early flowering 4-like 2	Doritaenopsis hybrid cultivar
A0A0F6PVI7	Vb3, Vb5	4	1	0.01*	Vb3	931.3±152.2	DEFICIENS-like MADS-box transcription factor (Fragment)	Paphiopedilum sp. 2 XQW-2015

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
A0A0F6PVV9	Vb2, Vb3, Vb5	9	1	0.00*	Vb5	1099.9±183.3	DEFICIENS-like MADS-box transcription factor (Fragment)	Paphiopedilum hangianum
A0A0N7AL13	Vb3, Vb5	6	3	0.00*	Vb5	5076.7±659.6	FD protein	Phalaenopsis aphrodite subsp. formosana
A0A0U1VD58	Vb1, Vb5	5	1	0.00*	Vb5	9791.1±430.7	MADS14	Erycina pusilla
A0A142L043	Vb1, Vb2	15	9	1.00	Vb1	1288±425.1	APETALA2-like protein	Cattleya trianae
A0A1L1WKW 6	Vb2, Vb3, Vb5	2	2	1.00	Vb3	3617.9±1311.9	MADS38	Erycina pusilla
A0A1L1WKX4	Vb1, Vb5	4	3	1.00	Vb5	20417.2±1862	MADS41	Erycina pusilla
A0A1L1WKY1	Vb3, Vb5	2	1	1.00	Vb5	1744.7±321.1	MADS40	Erycina pusilla
A0A1L1WKY3	Vb2, Vb3, Vb5	10	5	1.00	Vb3	5900.8±1729.9	MADS3	Apostasia odorata
A0A1L1WKY5	Vb2, Vb5	2	1	1.00	Vb5	4674.9±1642.2	MADS1	Apostasia odorata
A0A1L1WKZ4	Vb3, Vb5	7	4	1.00	Vb3	6243.8±1130.5	MADS14	Apostasia odorata
A0A1L1WKZ5	Vb3, Vb5	6	2	1.00	Vb5	3668.6±1305.2	MADS16	Apostasia odorata
A0A1L1WKZ7	Vb2, Vb5	15	5	1.00	Vb2	3666.6±1131.8	MADS13	Apostasia odorata

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
A0A1L1WL06	Vb2, Vb3	9	7	1.00	Vb2	2553.7±364.7	MADS9	Apostasia odorata
A0A1L1WL08	Vb2, Vb3, Vb5	5	2	1.00	Vb3	8221.4±2983.4	MADS20	Apostasia odorata
A0A1L1WL12	Vb3, Vb5	9	2	1.00	Vb5	1056.1±72.9	MADS31	Apostasia odorata
A0A1L1WL16	Vb3, Vb5	3	1	1.00	Vb5	4704.5±1289.3	MADS33	Apostasia odorata
A0A1L1WL19	Vb1, Vb2	5	2	1.00	Vb2	17151.1±6587.2	MADS36	Apostasia odorata
A0A1L1WL24	Vb2, Vb5	7	4	1.00	Vb5	40581.2±7565.8	MADS30	Apostasia odorata
A0A1L1WL26	Vb2, Vb5	2	2	1.00	Vb5	14416.7±1726.4	MADS41	Apostasia odorata
A0A1L1WP45	Vb2, Vb3	1	1	1.00	Vb3	882.6±194.4	MADS32	Apostasia odorata
A0A1L1WSB1	Vb2, Vb5	4	1	1.00	Vb5	310.3±22.9	MADS27	Apostasia odorata
A51851	Vb1, Vb5	3	1	1.00	Vb1	1404.7±242	Leafy-floricaula protein (Fragment)	Ophrys creticola
B1WAN2	Vb2, Vb3, Vb5	12	1	1.00	Vb5	12528.9±1070.5	LEAFY	Phalaenopsis hybrid cultivar
B6ZDS5	Vb2, Vb3, Vb5	9	1	1.00	Vb5	10901.9±1999.8	MADS-box transcription factor	Habenaria radiata

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
B7T4F3	Vb2, Vb5	16	2	1.00	Vb2	5576.7±1498.2	MADS box AP3-like protein 1	Dendrobium hybrid cultivar
B9W016	Vb2, Vb5	5	1	1.00	Vb5	20750.2±5824.2	LEAFY (Fragment)	Oncidium hybrid cultivar
C519R2	Vb2, Vb3, Vb5	6	3	1.00	Vb5	5991.5±1035.8	DEFICIENS-like MADS-box transcription factor	Gongora galeata
C5I9S1	Vb1, Vb2, Vb5	8	1	1.00	Vb5	3932.8±164.3	DEFICIENS-like MADS-box transcription factor	Phragmipedium Iongifolium
C5I9S6	Vb3, Vb5	7	1	1.00	Vb3	14495.1±2651.6	DEFICIENS-like MADS-box transcription factor	Spiranthes odorata
C519S8	Vb2, Vb3	10	1	1.00	Vb2	33261.1±12474.6	GLOBOSA-like MADS-box transcription factor	Spiranthes odorata
D4N890	Vb3, Vb5	3	1	1.00	Vb3	2451.1±887.5	AP3-related protein 4	Dendrobium moniliforme (Epidendrum moniliforme)
D9IFM4	Vb3, Vb5	3	1	1.00	Vb5	963.3±156	MADS box transcription factor 10	Oncidium hybrid cultivar
D9IFM5	Vb3, Vb5	5	2	1.00	Vb5	28379.1±4195.5	MADS box transcription factor 11	Oncidium hybrid cultivar
E6Y7M5	Vb1, Vb3, Vb5	4	2	1.00	Vb3	13624.3±2111.2	CONSTANS-like protein	Phalaenopsis hybrid cultivar
E7BUG5	Vb1, Vb3,Vb5	2	2	1.00	Vb5	1305.7±410.7	CONSTANS-like protein	Dendrobium loddigesii (Callista loddigesii)

Supplementary Table	1. Proteins	identified invo	olved in l	Flowering ((continue)
---------------------	-------------	-----------------	------------	-------------	------------

	Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
	F5ANW4	Vb2, Vb3, Vb5	5	2	1.00	Vb5	4192.8±1482.2	Candidate developmental transcription factor TCP4 (Fragment)	Phalaenopsis hybrid cultivar
	G2XK84	Vb3, Vb5	12	1	1.00	Vb3	3873.9±870.8	B-class MADS-box protein PI-2 (Fragment)	Anoectochilus formosanus
_	G2XK93	Vb3, Vb5	7	3	1.00	Vb3	27545.4±84.7	B-class MADS-box protein AP3-1 (Fragment)	Galeola falconeri
	G2XKA8	Vb2, Vb5	8	4	1.00	Vb2	3790.1±1477.3	B-class MADS-box protein AP3-4 (Fragment)	Oncidium hybrid cultivar
	G2XKB0	Vb3, Vb5	9	2	1.00	Vb5	282±62.1	B-class MADS-box protein AP3-1 (Fragment)	Paphiopedilum hybrid cultivar
	G2XKB2	Vb3, Vb5	9	5	1.00	Vb3	5207.7±787.2	B-class MADS-box protein AP3-3 (Fragment)	Paphiopedilum hybrid cultivar
	H2ERP3	Vb3, Vb5	4	2	1.00	Vb5	1746.3±239.7	AP1-like protein	Cymbidium faberi
	H6U642	Vb1, Vb5	8	2	1.00	Vb5	4952.8±1323.9	APETALA3-like MADS-box protein	Cymbidium ensifolium (Epidendrum ensifolium)
	I6Q0H7	ALL	6	1	1.00	Vb3	3498.3±543.3	LEAFY (Fragment)	Apostasia sp. G244
	16Q0K8	Vb3, Vb5	5	1	1.00	Vb5	540.1±159.7	LEAFY (Fragment)	Cypripedium margaritaceum
	I6Q108	Vb3, Vb5	6	1	1.00	Vb3	4934.8±1617.6	LEAFY (Fragment)	Paphiopedilum wardii
	I6Q436	Vb3, Vb5	4	1	1.00	Vb5	5715.1±408.6	LEAFY (Fragment)	Neuwiedia zollingeri var. singapureana
	16Q4J0	Vb3, Vb5	3	1	1.00	Vb3	9538.5±923.9	LEAFY (Fragment)	Cypripedium margaritaceum

	Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
	J9Z4N7	Vb1, Vb3	2	2	1.00	Vb3	378.3±50.7	AP-1 complex subunit sigma-2- like protein	Dendrobium catenatum
	K4JB92	Vb1, Vb2, Vb3	8	1	1.00	Vb2	6070±1393.7	C-class MADS-box-like protein	Orchis italic
	M9QR13	Vb1, Vb5	4	2	1.00	Vb5	194±60.9	CONSTANS-like 3	Erycina pusilla
	M9QR29	ALL	11	7	1.00	Vb1	34051.4±1674.5	AP2-6	Erycina pusilla
	M9QR34	Vb3, Vb5	17	6	1.00	Vb5	15803.4±1174.5	AP2-11	Erycina pusilla
	M9QS80	Vb2, Vb5	1	1	1.00	Vb2	186.6±20.3	CONSTANS-like 1	Erycina pusilla
	M9QS85	Vb3, Vb5	1	1	1.00	Vb5	6283.9±349.6	CONSTANS-like 6	Erycina pusilla
	M9QSA7	Vb2, Vb5	7	5	1.00	Vb5	1358±401.7	SQUAMOSA promoter-binding- like 2	Erycina pusilla
	M9QSB4	Vb3, Vb5	13	10	1.00	Vb5	16606.8±1171.5	SQUAMOSA promoter-binding- like 7	Erycina pusilla
	M9QTP3	Vb2, Vb3	2	1	1.00	Vb3	4014.8±413.1	CONSTANS-like 7	Erycina pusilla
	M9QTQ4	Vb2, Vb3	3	2	1.00	Vb2	11502.9±4200.5	AP2-5	Erycina pusilla
	M9QTR6	ALL	5	4	1.00	Vb1	3941.2±506.1	SQUAMOSA promoter-binding- like 3	Erycina pusilla
	M9QXL3	Vb1, Vb3	1	1	1.00	Vb3	2767.3±962.6	SQUAMOSA promoter-binding- like 1	Erycina pusilla
	M9QZ49	Vb3,Vb5	1	1	1.00	Vb3	5059±561	CONSTANS-like 4	Erycina pusilla

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
M9QZ62	Vb1, Vb2	7	3	1.00	Vb1	2305.4±608.4	AP2-7	Erycina pusilla
M9QZ67	Vb1, Vb3, Vb5	5	3	1.00	Vb3	5806.2±1736.5	AP2-12	Erycina pusilla
M9QZ71	Vb3, Vb5	3	2	1.00	Vb5	1702.4±172.8	SQUAMOSA promoter-binding- like 5	Erycina pusilla
Q0KKF5	Vb3, Vb5	4	1	1.00	Vb3	575.2±195.6	Pistillata-like protein (Fragment)	Anacamptis morio
Q2IA03	Vb3, Vb5	3	2	1.00	Vb3	420.9±107.7	AGAMOUS-like transcription factor	Dendrobium crumenatum (Tropical pigeon orchid)
Q539E6	Vb3, Vb5	5	1	1.00	Vb5	53113.6±18262.4	Class 1 knox	Dendrobium nobile
Q5XM80	Vb3, Vb5	8	1	1.00	Vb3	1013±75.7	MADS box PI-like protein 9	Phalaenopsis hybrid cultivar
Q84KZ6	Vb2, Vb3	12	1	1.00	Vb3	4629.4±1028.9	LFY-like protein OrcLFY	Dactylorhiza romana (Orchis romana)
Q84KZ9	Vb3, Vb5	13	2	1.00	Vb3	231.7±47.9	LFY-like protein OrcLFY	Anacamptis laxiflora
Q84L00	Vb2, Vb5	8	3	1.00	Vb5	10913.3±2153.4	LFY-like protein OrcLFY	Anacamptis pyramidalis
Q84L02	Vb3, Vb5	7	1	1.00	Vb3	11878.1±1830.8	LFY-like protein OrcLFY	Neotinea maculate
Q84L04	ALL	8	1	1.00	Vb5	12064.5±3322.7	LFY-like protein OrcLFY	Ophrys tenthredinifera
Q84L07	Vb2,Vb3	8	3	1.00	Vb3	1955.4±340.4	LFY-like protein OrcLFY	Orchis anthropophora

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
Q8RVW5	Vb1, Vb3, Vb5	11	4	1.00	Vb3	3733.8±534.5	MADS-box transcription factor	Phalaenopsis equestris
Q9XEK0	Vb1, Vb3	7	5	0.00*	Vb3	4074.7±1006.2	MADS box protein DOMADS1 (MADS-box transcription factor)	Dendrobium grex Madame Thong-In
U3U8P9	Vb1, Vb3	7	6	0.02*	Vb3	2134.5±807.1	DEF-like protein	Orchis italic
U3U9X3	Vb1, Vb2, Vb3	11	2	0.00*	Vb1	3413.3±916.1	DEF-like protein	Orchis italic
X2F442	Vb2, Vb3, Vb5	10	9	0.00*	Vb3	9552.7±2651.2	MADS-box protein 2 (MADS2)	Erycina pusilla
X2F450	Vb3, Vb5	6	1	0.06	Vb3	3000.6±618	MADS-box protein 12 (MADS12)	Erycina pusilla
X2F460	Vb3, Vb5	2	1	0.00*	Vb3	5941±1554.8	MADS-box protein 27 (MADS27)	Erycina pusilla
X2F5E8	Vb2, Vb3, Vb5	4	1	0.00*	Vb5	1266.3±260.2	MADS-box protein 23 (MADS23)	Erycina pusilla
X2F977	Vb3, Vb5	9	2	0.22	Vb5	1910.7±503.3	MADS-box protein 1 (MADS1)	Erycina pusilla
X2F984	Vb1, Vb3, Vb5	6	3	0.00*	Vb5	523.6±138.4	MADS-box protein 11 (MADS11)	Erycina pusilla
X2F988	Vb3, Vb5	9	1	0.97	Vb3	1343.5±471.7	MADS-box protein 16 (MADS16)	Erycina pusilla
Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Hignest mean condition	Highest mean±SD [⊧]	Protein names	Organism
-----------	----------------------------	------------------------------	------------------------------	---------------------------------------	------------------------------	---------------------------------	--------------------------------------	------------------------
X2FB19	Vb3, Vb5	7	2	0.00*	Vb5	847.3±192.4	MADS-box protein 5 (MADS5)	Erycina pusilla
X2FB33	Vb3, Vb5	5	3	0.00*	Vb5	22438.5±4680	MADS-box protein 25	Erycina pusilla
X2FD75	Vb1, Vb3, Vb5	7	6	0.00*	Vb1	17207±2413.2	MADS-box protein 4 (MADS4)	Erycina pusilla
X2FD86	Vb2, Vb5	5	1	0.32	Vb2	451.1±86.6	MADS-box protein 19 (MADS19)	Erycina pusilla
X5DD29	Vb2, Vb5	4	1	0.01*	Vb5	1913.6±118.5	SEPALLATA-like MADS-box protein 4	Phalaenopsis equestris

Supplementary Table 1. Proteins identified involved in Flowering (continue).

A extraction condition/**B** peptide count/**C** unique peptide/**D** data analyzes was performed using ANOVA (p < 0.05) followed by the Tukey significance test, were asterisk (*) denote statistical significance difference. /**E** mean value of the highest condition ± Standard deviation value. 574 575

576

Supplementary Table 2. Proteins identified involved in Fruiting. 577 ____

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
A0A068FJK4	Vb3, Vb5	4	3	0.51	Vb5	4415.5±1526.5	1-aminocyclopropane-1-carboxylate synthase 7 (Fragment)	Oncidium hybrid cultivar
A0A0A0R219	ALL	12	2	0.00*	Vb3	27007.9±844	Class C MADS-domain transcription factor (Fragment)	Gongora galeata
A0A0A7KL66	Vb1, Vb5	2	1	0.00*	Vb5	5530.8±1025.4	Pectinesterase (Fragment)	Dendrobium hybrid cultivar
A0A0F6PUR0	Vb1, Vb3, Vb5	2	1	0.00*	Vb5	1841.9±611.2	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Paphiopedilum helenae

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
A0A0F6PUT3	Vb3, Vb5	6	2	0.00*	Vb5	4138.8±442.4	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Paphiopedilum sugiyamanum
A0A0F6PVY2	Vb3, Vb5	6	1	0.15	Vb5	3903.6±1365	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Paphiopedilum victoria- mariae
A0A0F6PXG1	Vb3, Vb5	7	2	0.57	Vb5	2070.5±194.8	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Paphiopedilum dayanum
A0A0U1TTF5	Vb3, Vb5	9	2	0.26	Vb3	1651.2±323.8	Aureusidin synthase-like protein (Fragment)	Oncidium hybrid cultivar
A0A1D8DGS6	Vb1, Vb2	8	5	1.00	Vb1	3981.3±1367.1	Ethylene insensitive 3-like 1	Phalaenopsis aphrodite subsp. formosana
A0JBY6	Vb2, Vb5	7	3	1.00	Vb5	716.9±190.4	ACC synthase (Fragment)	Cymbidium hybrid cultivar
A4UTQ8	Vb2, Vb3, Vb5	9	1	1.00	Vb3	4833.5±482	1-aminocyclopropane-1-carboxylate synthase	Dendrobium hybrid cultivar
A8DC72	Vb1, Vb2	12	1	1.00	Vb2	4054.3±795.3	1-aminocyclopropane-1-carboxylic acid oxidase (Fragment)	Dendrobium hybrid cultivar
B0FYC7	Vb3, Vb5	14	1	1.00	Vb5	3113.3±309.6	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	x Brassolaeliocattleya 'Sung Ya Green'
C0KXG8	Vb2, Vb3	11	1	1.00	Vb3	1271.8±483.9	Ethylene response sensor 1	Dendrobium hybrid cultivar
E2I9R2	Vb2, Vb3, Vb5	6	1	1.00	Vb2	5880.1±1578.9	1-aminocyclopropane-1-carboxylate synthase 3 (Fragment)	Dendrobium hybrid cultivar
G0Y289	Vb2, Vb3, Vb5	14	4	1.00	Vb2	12136.8±3913	Ethylene insensitive 3-like protein	Oncidium hybrid cultivar

Supplementary Table 2.	Protein	s ide	entified	involved	in I	Fruiting	(continue)
			_	ANOVA	ŀ	liahest	

Accession	Accession Extract Pept ^B . Ur cond. ^A count pe		Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
I0DHH0	Vb2, Vb3, Vb5	16	7	1.00	Vb2	9944.2±2500.3	Allene oxide synthase	Cymbidium ensifolium (Epidendrum ensifolium)
16Q0N0	Vb2, Vb5	6	1	1.00	Vb5	253.4±94.3	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	<i>Cypripedium acaule</i> (Pink lady's slipper orchid)
16Q2U8	Vb3, Vb5	9	2	1.00	Vb5	1623.5±393.4	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Cypripedium japonicum
16Q2V1	Vb3, Vb5	5	1	1.00	Vb5	253.9±86.9	1-aminocyclopropane-1-carboxylate oxidase (Fragment)	Vanilla sp. G241
Q6RCS3	Vb1, Vb3, Vb5	3	1	1.00	Vb3	4695.7±468.5	1-aminocyclopropane-1-carboxylate synthase	Cattleya bicolor
Q96413	Vb2, Vb3, Vb5	6	2	1.00	Vb2	8882.4±2734.8	ACC synthase	<i>Dendrobium</i> <i>crumenatum</i> (Tropical pigeon orchid)
Q9ZSD2	Vb2, Vb5	16	3	1.00	Vb2	2202.6±874	Putative ethylene response sensor	Phalaenopsis hybrid cultivar
Q9XGG3	Vb1, Vb2	6	5	0.00*	Vb2	1893.5±388.6	1-aminocyclopropane-carboxylate synthase homologue	Phalaenopsis hybrid cultivar
U5XI27	Vb3, Vb5	6	4	0.00*	Vb5	17341.8±5800.3	1-aminocyclopropane-1-carboxylate synthase 3 (Fragment)	Oncidium hybrid cultivar
A0A0F6PVI7	Vb3, Vb5	4	1	0.01*	Vb3	931.3±152.2	DEFICIENS-like MADS-box transcription factor (Fragment)	Paphiopedilum sp. 2 XQW-2015
A0A0F6PVV9	Vb2, Vb3, Vb5	9	1	0.00*	Vb5	1099.9±183.3	DEFICIENS-like MADS-box transcription factor (Fragment)	Paphiopedilum hangianum

Supplementary Table 2.	Proteins	s identified	involved	in Fruitii	ng (continue)
------------------------	----------	--------------	----------	------------	---------------

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
C5I9R2	Vb2, Vb3, Vb5	6	3	1.00	Vb5	5991.5±1035.8	DEFICIENS-like MADS-box transcription factor	Gongora galeata
C5I9S1	Vb1, Vb2, Vb5	8	1	1.00	Vb5	3932.8±164.3	DEFICIENS-like MADS-box transcription factor	Phragmipedium Iongifolium
C519S6	Vb3, Vb5	7	1	1.00	Vb3	14495.1±2651.6	DEFICIENS-like MADS-box transcription factor	Spiranthes odorata
U3U8P9	Vb1, Vb3	7	6	0.02*	Vb3	2134.5±807.1	DEF-like protein	Orchis italica
U3U9X3	Vb1, Vb2, Vb3	11	2	0.00*	Vb1	3413.3±916.1	DEF-like protein	Orchis italica

Supplementary Table 2. Proteins identified involved in Fruiting (continue)

A extraction condition/B peptide count/C unique peptide/D data analyzes was performed using ANOVA (p < 0.05) followed by the Tukey significance test, were asterisk (*) denote statistical significance difference. /E mean value of the highest condition \pm Standard deviation value.

Supplementary Table 3. Proteins identified involved in phenols biosynthesis.

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
A0A068ERY8	ALL	3	3	0.00*	Vb2	7072.7±2028.3	Isoflavone reductase-like protein	Dendrobium catenatum
A0A075E375	Vb3, Vb5	12	10	0.00*	Vb3	2234.8±62.8	Orcinol O-methyltransferase	Vanda hybrid cultivar
A0A075E3N4	Vb3, Vb5	9	5	0.05*	Vb5	1966.6±275.2	Benzoic acid/salicylic acid carboxyl methyltransferase	Vanda hybrid cultivar

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [₌]	Protein names	Organism
A0A088G538	Vb3, Vb5	7	1	0.00*	Vb5	8631.2±739.5	Chalcone synthase	Cymbidium hybrid cultivar
A0A088G4R1	Vb5	13	11	0.77	Vb5	1604.6±212.9	Flavonol synthase	Cymbidium hybrid cultivar
A0A096ZX30	Vb1, Vb3, Vb5	1	1	0.00*	Vb5	3775.8±458.5	MYB transcription factor 1	Phalaenopsis equestris
A0A096ZX41	Vb1, Vb3, Vb6	8	1	0.00*	Vb1	888±250.8	Dihydroflavonol 4-reductase	Phalaenopsis equestris
A0A096ZX44	Vb2, Vb5	5	2	0.00*	Vb2	2911.2±794.2	MYB transcription factor 16	Phalaenopsis equestris
A0A096ZX46	Vb3, Vb5	4	1	0.03*	Vb3	7696.8±916.1	MYB transcription factor 2	Phalaenopsis equestris
A0A096ZX55	Vb2, Vb5	11	7	0.48	Vb5	3635.1±595.6	MYB transcription factor 12	Phalaenopsis equestris
A0A096ZX66	Vb2, Vb3	7	1	0.09	Vb3	789.3±246.8	Chalcone synthase	Phalaenopsis equestris
A0A096ZX69	Vb3, Vb5	9	4	0.00*	Vb3	1809±287.4	MYB transcription factor 9	Phalaenopsis equestris
A0A096ZX71	Vb3, Vb5	16	13	0.38	Vb5	3295.2±757.8	Flavonoid 3'-hydroxylase	Phalaenopsis equestris

Supplementary Table 34. Proteins identified involved in phenols biosynthesis (continue)

 A0A096ZX72
 Vb2, Vb3
 2
 2
 0.00*
 Vb2
 8324.9±1929.2
 MYB transcription factor 3
 Phalaenopsis equestris

Supplementary Table 35. Proteins identified involved in phenols biosynthesis (continue)

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	mean condition	Highest mean±SD ^E	Protein names	Organism
A0A096ZX73	Vb3, Vb5	2	1	0.00*	Vb3	251.9±96.9	MYB transcription factor 14	Phalaenopsis equestris
A0A096ZX74	Vb3, Vb5	8	4	0.00*	Vb3	3618.3±123.2	MYB transcription factor 8	Phalaenopsis equestris
A0A096ZX77	Vb3, Vb5	10	3	0.00*	Vb3	7153±883.6	MYB transcription factor 10	Phalaenopsis equestris
A0A0A6Z8F0	Vb1, Vb2, Vb5	5	1	0.00*	Vb5	4485.6±315.9	Chalcone synthase (Fragment)	<i>Paphiopedilum armeniacum (</i> Golden slipper orchid)
A0A0A6Z8F3	Vb1, Vb5	6	2	0.02*	Vb1	3134.6±1108.6	Chalcone synthase (Fragment)	Paphiopedilum purpuratum
A0A0A6Z8K1	Vb3, Vb5	3	1	0.00*	Vb5	2158.1±813.3	Chalcone synthase (Fragment)	Paphiopedilum micranthum
A0A0A6Z8P9	ALL	10	5	0.00*	Vb1	29404.1±9770.7	Chalcone synthase (Fragment)	Paphiopedilum x areeanum
A0A0E3NBN0	Vb3, Vb5	8	1	0.04*	Vb3	14543.7±5572.9	Eugenol synthase 2	<i>Gymnadenia</i> odoratissima (Orchis odoratissima)
A0A0F7G352	Vb3, Vb5	11	10	0.00*	Vb3	1344.9±177.9	Vanillin synthase	Vanilla planifolia (Vanilla)

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
A0A0M3U4G0	Vb1, Vb2, Vb5	12	2	0.00*	Vb2	13956.5±3504	Chalcone synthase	Dendrobium catenatum
A0A0P0DLN5	Vb2, Vb5	26	13	0.04*	Vb2	2345.8±785.5	Coumarate 3-hydroxylase	Dendrobium catenatum
A0A0U1TTF5	Vb3, Vb5	9	2	0.26	Vb3	1651.2±323.8	Aureusidin synthase-like protein (Fragment)	Oncidium hybrid cultivar
A0A0U1VL99	Vb2, Vb5	8	2	0.021*	Vb5	654.5±151.2	Flavanone-3-hydroxylase	Phalaenopsis hybrid cultivar
A0A0U1VLB8	Vb1, Vb5	14	1	0.00*	Vb5	7764±1098.1	Dihydroflavonol 4-reductase	Phalaenopsis hybrid cultivar
A0A126QG95	Vb3, Vb5	3	2	1.00	Vb5	491.9±87.9	Dihydroflavonol 4-reductase (Fragment)	Dendrobium catenatum
A0A142IGA4	Vb1, Vb5	10	8	1.00	Vb1	27916.9±6181.9	Glutamate-cysteine ligase (Fragment)	Oncidium hybrid cultivar
A0A191XZN5	Vb3, Vb5	6	5	1.00	Vb5	30827±3535	Flavonoid 3'-5' hydroxylase (Fragment)	Phalaenopsis lueddemanniana
A0A1I9K5X5	Vb5	5	2	1.00	Vb5	2386.7±447.9	4-coumarate.CoA ligase	Dendrobium catenatum
A7KTI4	Vb2, Vb3	5	3	1.00	Vb2	1778.5±421.7	Chalcone-flavonone isomerase family protein	Oncidium hybrid cultivar

Supplementary Table 3. Proteins identified involved in phenols biosynthesis (continue)

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD [⊧]	Protein names	Organism
A7UCI5	Vb3, Vb5	3	1	1.00	Vb5	2027.5 ± 234.9	Chalcone synthase (Fragment)	Cymbidium floribundum
A8QME9	ALL	5	1	1.00	Vb2	2502.3±556.8	Chalcone synthase (Fragment)	Dactylorhiza viridis
A8QMI6	Vb1, Vb3, Vb5	4	1	1.00	Vb1	2661.1±1009.7	Chalcone synthase (Fragment)	Gymnadenia borealis
A8QMJ9	Vb2, Vb5	4	1	1.00	Vb5	12221.1±306	Chalcone synthase (Fragment)	Traunsteinera globosa
B2LUN8	Vb3, Vb5	2	2	1.00	Vb5	3039.3±204.9	Flavonoid 3',5' hydroxylase-like protein	Vanda coerulea
B5MBV6	Vb2, Vb3, Vb5	9	1	1.00	Vb3	1109.3±80.5	Dihydroflavonol-4-reductase	Dendrobium hybrid cultivar
F2YP45	Vb3, Vb5	6	6	1.00	Vb5	10686.6±3023.3	OMT4	Vanilla planifolia (Vanilla)
F2YP46	Vb3, Vb5	4	2	1.00	Vb3	38082.6±3676.6	OMT5	Vanilla planifolia (Vanilla)
F5A635	Vb1, Vb2, Vb3	12	1	1.00	Vb2	8543.1±2144.9	Chalcone synthase	Dendrobium moniliforme (Epidendrum moniliforme)

Supplementary Table 36. Proteins identified involved in phenols biosynthesis (continue)

	Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
	F5A637	Vb1, Vb3, Vb5	8	2	1.00	Vb3	7118.7±1387.1	Flavonoid 3',5'-hydroxylase	Dendrobium moniliforme (Epidendrum moniliforme)
	H9TB32	Vb3, Vb5	1	1	1.00	Vb5	1161.9±133.2	F3H (Fragment)	Oncidium hybrid cultivar
	L7SSS6	Vb5	21	12	1.00	Vb5	2354.1±370.6	Phenylalanine ammonia-lyase	Dendrobium candidum
	O64902	Vb2, Vb3, Vb5	9	5	1.00	Vb2	3200±1047.3	Dihydroflavonol-4-reductase	Cymbidium hybrid cultivar
	P93482	Vb5	25	2	1.00	Vb5	2671.6±569.1	Acyl-coenzyme A oxidase	Phalaenopsis hybrid cultivar
	Q27163	Vb1, Vb3, Vb5	5	1	1.00	Vb3	698±110.8	O-methyltransferase -2	Vanilla planifolia (Vanilla)
	Q42609	Vb2, Vb5	20	8	1.00	Vb2	15520.4±5966.6	Phenylalanine ammonia-lyase	Bromheadia finlaysoniana
	Q43741	Vb3, Vb5	10	5	1.00	Vb5	2148.7±609.4	Naringenin 3-dioxygenase	Bromheadia finlaysoniana
	Q45RS8	Vb3, Vb5	5	2	1.00	Vb5	20.3±1.4	Chalcone synthase	Oncidium hybrid cultivar

Supplementary Table 37. Proteins identified involved in phenols biosynthesis (continue)

	Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> -value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
	Q4VFZ0	Vb1, Vb3	10	1	1.00	Vb3	42.3±12.9	Dihydroflavonol 4-reductase	Oncidium hybrid cultivar
	Q6LC98	Vb2, Vb5	29	4	1.00	Vb2	32996.8±8813.7	Acyl-coenzyme A oxidase	Phalaenopsis hybrid cultivar
	Q6Q796	Vb1, Vb3	12	7	1.00	Vb1	1887.1±519.4	Caffeic acid O-methyltransferase	Vanilla planifolia (Vanilla)
	Q84U50	Vb3, Vb5	3	1	1.00	Vb3	17224.2±6062.4	MYB4	Dendrobium sp. XMW- 2002-4
	R9UNP6	Vb2, Vb5	9	8	0.00*	Vb2	5430.6±1336.5	Cinammate 4-hydroxylase	Dendrobium catenatum
	T1Q041	Vb3, Vb5	8	2	0.00*	Vb3	10219.5±1670.8	Chalcone synthase	Paphiopedilum concolor
	V9PCW5	Vb3, Vb5	3	3	0.01*	Vb3	9643.4±1388	Chalcone-flavonone isomerase family protein	Dendrobium hybrid cultivar
	V9PCX2	Vb3, Vb5	15	7	0.00*	Vb5	2547.6±329	Flavonoid 3',5'-hydroxylase	Dendrobium hybrid cultivar
	V9PCX9	Vb2, Vb5	6	1	0.00*	Vb5	3481.6±950.8	Dihydroflavonol 4-reductase	Dendrobium hybrid cultivar

Supplementary Table 3. Proteins identified involved in phenols biosynthesis (continue)

582A extraction condition/B peptide count/C unique peptide/D data analyzes was performed using ANOVA (p < 0.05) followed by the Tukey significance test, were asterisk (*) denote583statistical significance difference. /E mean value of the highest condition ± Standard deviation value.

Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
A0A0F6YPA0	Vb3, Vb5	2	1	0.00*	Vb3	5290.5±127.8	Mevalonate kinase (MK)	Nervilia fordii
A0A0K1Z517	Vb2, Vb5	7	5	0.00*	Vb2	55753.4±5228.4	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	Dendrobium catenatum
A0A159BKQ8	Vb2, Vb5	12	9	1.00	Vb2	5573±1563.7	1-deoxy-D-xylulose-5-phosphate synthase (Fragment)	Nervilia fordii
A9YCD2	Vb5	23	13	0.80	Vb5	7723.1±212.9	Flavonol synthase	Cymbidium hybrid cultivar
I0DHG9	Vb1, Vb5	7	5	1.00	Vb5	23722.2±3051.4	Jasmonic acid carboxyl methyltransferase	<i>Cymbidium ensifolium</i> (Epidendrum ensifolium)
I0DHH0	Vb2, Vb3, Vb5	16	7	1.00	Vb2	9944.2±2500.3	Allene oxide synthase	<i>Cymbidium ensifolium</i> (Epidendrum ensifolium)
J7EGE4	Vb5	19	10	0.76	Vb5	2084.8±398.5	Terpene synthase (Fragment)	Phalaenopsis bellina
J7EGE9	Vb5	8	3	1.00	Vb5	372±85.2	Terpene synthase	Phalaenopsis equestris (Moth orchid)
I7FHQ2	Vb2, Vb5	12	3	1.00	Vb5	1134.8±205.4	Farnesyl pyrophosphate synthase	Cymbidium goeringii
K7WTR3	Vb3, Vb5	11	1	1.00	Vb5	21842.8±2656.4	Farnesyl pyrophosphate synthase	Dendrobium catenatum
V9MW47	Vb2	11	9	1.00	Vb2	37505.7±3271.3	Mitogen-activated protein kinase	Dendrobium catenatum

Supplementary Table 4. Proteins identified involved in terpene biosynthesis.

Supplementary Table 4. Proteins identified involved in terpene biosynthesis (continue).

	Accession	Extract cond. ^A	Pept ^B . count	Unique pept. ^c	ANOVA <i>p</i> - value ^D	Highest mean condition	Highest mean±SD ^E	Protein names	Organism
	V9QM18	Vb3, Vb5	12	2	0.00*	Vb5	1893.8±349.8	Farnesyl pyrophosphate synthetase 1 (Farnesyl pyrophosphate synthetase 2)	Dendrobium huoshanense
	V9TNZ2	Vb3, Vb5	8	3	0.00*	Vb5	13404.7±390.4	3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase)	Dendrobium huoshanense
	X2KWX1	Vb3, Vb5	27	16	0.02*	Vb3	5776±113.9	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase	Dendrobium catenatum

586 587 588 589 A extraction condition/B peptide count/C unique peptide/D data analyzes was performed using ANOVA (p < 0.05) followed by the Tukey significance test, were asterisk (*) denote statistical significance difference. /E mean value of the highest condition \pm Standard deviation value.

Supplementary Table 8. Identified proteins of V. bahiana fruit from Vb1, Vb2, Vb3 and Vb5 samples- not show 590

Conclusões Gerais

- As proteínas identificadas nos frutos de *V. bahiana* confirmam o potencial enzimático dessa espécie para a produção de compostos, já descritos na literatura, como responsáveis pelo aroma e sabor do extrato natural de baunilha.
- Nos frutos de V. bahiana foram identificadas proteínas ligadas à floração, frutificação e amadurecimento de frutos, proteínas essas que podem servir como indicadores de amadurecimento dos frutos de Vanilla spp.
- Foi possível identificar proteínas relacionadas à biossíntese de fenóis de importância econômica como: ácido cafeico, ácido coumárico, ácido ferúlico e vanilina.
- O uso de SDS na concentração de 1% foi essencial para extrair mais proteínas totais com grande amplitude dinâmica nos frutos maduros.
- 1% de SDS também se mostrou eficaz na extração de uma diversidade maior de proteínas, principalmente das proteínas de interesse.
- A metodologia desenvolvida neste trabalho se mostrou eficaz e fundamental para extrair e identificar uma grande diversidade proteínas, reduzindo a interferência de contaminantes como o SDS.
- As análises de quantificação absoluta comprovaram a presença da vanilina, pirogalol e ácido cumarico nos frutos maduros de *V. bahiana*, que já forma encontrados nos extratos de *V. planifolia* e *V. tahitian* ligados ao aroma e sabor de baunilha característico.
- Os resultados e a metodologia apresentados podem colaborar com a conservação das Vanilla spp. e na caracterização químicas de seus frutos, podendo o perfil proteico identificado servir como um marcador de origem do extrato assegurando a qualidade do produto ao consumidor.

Perspectivas Futuras

Uma vez que o extrato natural de baunilha possui uma qualidade de sabor e aroma superior ao sintético, e essa relação de qualidade está ligada a mistura complexa de metabólitos presentes no fruto, uma das perspectivas futuras desse trabalho é realizar estudo metabolômico dos frutos de *V. bahiana* coletados.

Outra perspectiva desse trabalho é continuar os estudos ômicos das espécies de *Vanilla* localizadas na cidade do Rio de Janeiro, principalmente de *V. chamissonis*, que já foi coletada. Futuras extrações de proteínas serão realizadas utilizando o SDS nas soluções, com o intuito de obter uma maior diversidade de proteínas.