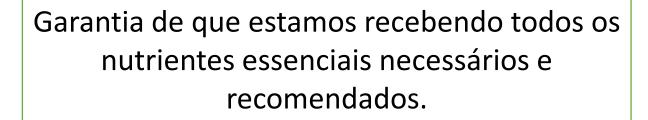


Corantes Naturais: uso e aplicação como compostos bioativos

Renata Linhares Ferrreira

CRN 4 - 11100077

Mestranda em Alimentos e Nutrição – PPGAN



Introdução

- ✓ Ênfase na busca por alimentos que contribuam para uma alimentação saudável;
- ✓ Alimentação colorida, variada e equilibrada em quantidade e qualidade

Introdução

✓ Pigmentos naturas em alimentos — proposito de colorir e promoção da saúde e do bem-estar, Reduzindo o risco de doenças crônicas não transmissíveis (DCNT).

☐ Substâncias bioativas encontradas em alimentos:

Carotenoides, licopeno, luteína e zeaxantina, bixina e norbixina, clorofilas, polifenóis, ácidos fenólicos, flavonoides, antocianinas, cúrcuma e curcumina, carmim, betalaínas, pigmentos de monascos purpureus, tagets, e os compostos bioativos do café.

- ✓ Pigmentos responsáveis pela cor alaranjada dos vegetais;
- ✓ Compostos de ligações duplas conjugadas e altamente insaturadas;
- √ São responsáveis pela cor dos alimentos e por algumas de suas funções biológicas

Alfacaroteno e betacaroteno

Atividade pró-vitamina A

Licopeno

Eliminação de espécies reativas de oxigênio.

✓ <u>Pesquisas recentes</u> — Possível participação dos carotenoides na prevenção e controle do câncer de próstata (Finley, 2005; Mortensen, 2004; Downnham & Collins, 2000)

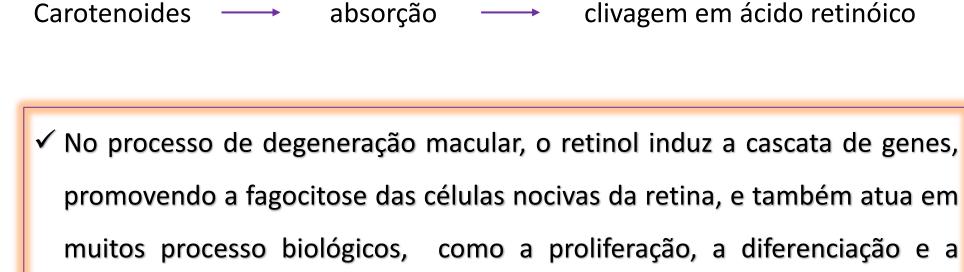
Presentes na região macular – papel na redução do risco da degeneração macular que ocorre no envelhecimento (Hasler, 2002).

✓ Estrutura química de alguns carotenoides:

A - alfacaroteno

B- betacaroteno

C- gamacaroteno



Carotenoides

morfogênese celular.

✓ Atividades biológicas

- Efeito antioxidante pela remoção do oxigênio singleto;
- Remoção dos radicais peroxila;
- Proteção do ácido desoxirribonucleico (DNA) contra oxidação;
- Modulação do metabolismo de carcinógenos;
- Inibição da proliferação celular;
- Aumento da diferenciação celular;
- Estimulação da comunicação intercelular;
- Aumento da resposta imunológica.

✓ Atividades biológicas

■ <u>Betacaroteno</u> – efeito antioxidante associado a degradação do pigmento e perda de cor no alimento.

A propriedade dos carotenoides de transformar o oxigênio reativo depende de diferenças entre as estruturas moleculares, como o número de duplas ligações entre os carbonos, grupos finais (cíclicos ou acíclicos), e grupos funcionais substituintes nos anéis.

Ordem decrescente da capacidade de extinção do oxigênio singlete

Licopeno > alfacaroteno > betacaroteno

✓ Atividades biológicas

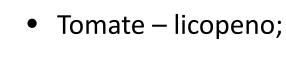
*Há evidencias de que os carotenoides atuam sinergicamente quando consumidos em forma de misturas de carotenoides, encontrados em fontes de alimentos naturais, como a cenoura.

Tabela 1 – Valores recomendados de alguns carotenoides na Dinamarca e nos EUA.

Carotenoides	Ingestão (mg/dia) na Dinamarca	Ingestão (mg/dia) nos EUA
Alfacaroteno	0,8	0,4
Betacaroteno	1,8	2
Betacriptoxantina	-	0,1
Luteína	0,6*	1,7
Licopeno	1,4	7,8

^{*}Luteína somente.

Fonte: Mortensen (2004).



✓ Atividades biológicas

Deste modo, os carotenoides são usados como corantes naturais em alimentos e alguns deles tem comprovado efeitos bioativos importantes na redução do risco de doenças.

- Alimento X pigmento bioativo

- Urucum bixina;
- Açafrão crocetina;
- Páprica capsantina e capssorubina;
- Brócolis luteína.

Licopeno

- ✓ Principais fontes tomate, melancia, goiaba.
- ✓ Não apresenta função pró-vitamínica
- ✓ Carotenoide que dispõe a maior <u>capacidade sequestrante do oxigênio singleto.</u>

- ❖ Efeito antioxidante Proteção:
- moléculas de lipídeos;
- Lipoproteínas de baixa densidade;
- Proteínas e DNA

O licopeno possui capacidade antioxidante *in vitro* pelo menos duas vezes superior a do betacaroteno.

Licopeno

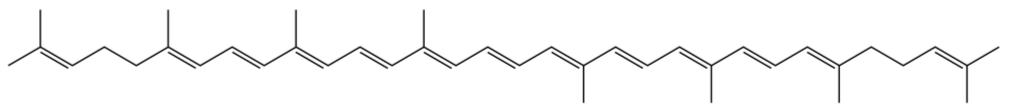


Figura: estrutura química do licopeno

Benefícios á saúde – Evidências científicas:

Estudos prospectivos recentes

Correlação entre alimentos que contêm licopeno e redução do risco de progressão de muitas doenças, entre elas a hipertensão arterial, DCV e cânceres cervical e de próstata (Lajolo, 2002; Hasler, 2002; Shami & Moreira, 2004; Canene-Adams et al., 2005; Engelhard et al., 2006).

Licopeno

- ✓ Redução do risco de câncer de próstata:
- Estudos pré-clínicos apontam ações por mecanismos diferentes potencial de contribuir para a redução da proliferação de células normais e células epiteliais cancerosas da próstata, menor dano ao DNA, melhora das defesas contra o estresse oxidativo e a indução a apoptose.
- Os mecanismos incluem:
- Inibição da sinalização do fator de crescimento similar a insulina (IGF-1) prostático;
- Inibição da expressão de interleucina 6 (IL-6)
- Inibição da sinalização de andrógenos.

Licopeno

• Absorção:

- Estudos tem indicado que o licopeno pode ser melhor absorvido de produtos do tomate processado, como *ketchup*, e molhos provenientes do tomate cru (Davies & Morland, 2004).

Tabela 2 – Conteúdo de licopeno no tomate e seus derivados.

	Alimentos	Concentração de licopeno (mg/100g de matéria fresca)		
		Faixa	Média	
	Tomates	2,62 a 60, 40	12,98±12,01	
	Ketchup	18,80 a 100,87	50,74±33,69	
	Purê de tomate	53,36 a 128,60	97,80±29,13	
	Extrato de tomate	32 a 629	538,63±85,04	
	Todas as amostras	2,62 a 629	206,68±232, 94	

Fonte: Baranska et al. (2006).

Luteína e Zeaxantina

- ✓ Mais polares que os outros carotenoides, de vido a presença do grupo hidroxil na estrutura cíclica do anel;
- ✓ A luteína apresenta estrutura similar a zeaxantina, sendo a primeira com dez duplas ligações e a segunda com onze duplas ligações.

$$H_3C$$
 CH_3 CH_3

Luteína e Zeaxantina

- ✓ Não podem ser convertidas em vitaminas A;
- ✓ São os principais constituintes da pigmentação macular;
- ✓ Evidencias cientificas recentes estabelecem relação direta entre o consumo destes pigmentos e a proteção contra o desenvolvimento de doenças oftálmicas (degeneração macular e catarata (Davies & Morland, 2004)), retinopatia diabética (Miranda et al. 2004, câncer (Downham & Collins, 2000), entre outras;
- √ Não são sintetizados no organismo;
- ✓ Consumo de altos níveis Reserva em níveis elevados nos tecidos do corpo humano.

Luteína e Zeaxantina

- ✓ Conferem coloração amarelo-ouro aos alimentos;
- ✓ Concentração de luteínas em diversos alimentos fonte.

Tabela 3 – Alimentos fonte de luteína (valores em mol %).

Alimentos	Luteína	Alimentos	Luteína
Gema de ovo	54	Maça vermelha	19
Milho	60	Suco de tomate	11
Quiuí	54	Nectarina	6
Suco de laranja	15	Pêssego	5
Laranja	7	-	-

Luteína e Zeaxantina

Tabela 4 – Legumes e verduras fontes de luteína (mg/100g).

Alimentos	Luteína	Alimentos	Luteína
Acelga	2,63	Vagem	0,27
Agrião	3,12	Pimentão verde	0,42
Almeirão	2,69	Brócolis	0,76
Azedinha	1,66	Rúcula	5,12
Lobrobô	3,10	Couve	3,51
Taioba	1,76	Espinafre	2,21
Serralha	3,21		

Fonte: Nachtigall et al., (2007).

Flavonoides

Antocianinas

✓ Estão presentes em algumas frutas vermelhas e hortaliças escuras e apresentam grande concentração nas cascas de uvas escuras;

- ✓ As encontradas em alimentos são derivadas das agliconas pertencentes a três pigmentos básicos:
- Perlagonidina (vermelho);
- Cianidina (vermelho);
- Delfinidina (violeta).

Flavonoides

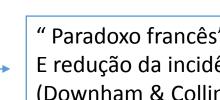
Antocianinas

✓ Aplicações:

• Geléias; bombons; chocolates; recheios; pastas de frutas; produtos de padaria; sorvetes iogurtes; sopas em pó; gelatinas; queijos cremosos, coberturas de bolo; refrigerantes e produtos de confeitaria (Downham, 2000; Mascarenhas 1998).

✓ Efeito biológico:

- Prevenção e retardo de diversas doenças por suas propriedades antioxidantes (Downham & Collins, 2000).
- Efeito sinergistico extratos são amis biologicamente ativos do que substancias isoladas.
- Estratos com misturas de elementos biologicamente ativos exercem maior efeito de eliminação de radicais, do que pigmentos purificados ao mesmo nível quantitativo.



Flavonoides

Antocianinas

Vinho tinto e cascas de uvas escuras

"Paradoxo francês" – associação entre o maior consumo de vinho tinto E redução da incidência de doenças cardíacas e alguns tipos de câncer (Downham & Collins, 2000).

- Propriedades anticarcinogênicas, antiinflamatórias e antimicrobianas (bactericidas, antivirais e fungistáticas);
- Prevenção da oxidação do colesterol LDL;
- Redução do índice de doenças cardiovasculares (DCV);
- Prevenção e efeito inibitório na progressão do câncer;
- Prevenção da degeneração causada pelo processo de envelhecimento.

Monascus purpureus

✓ Monografia de medicina chinesa em 1950

Descrição de procedimentos de fabricação do arroz-vermelho fermentado, bem como suas atribuições terapêuticas.

- ✓ <u>Vermelho *Koji*</u>
- Muito conhecido na medicina chinesa por suas propriedades;
- Melhora da digestão alimentar e circulação sanguínea;
- Consumo como suplemento alimentar por conter compostos funcionais

Monacolina K – mantem saudaveis os níveis séricos de lipídeos pelo decréscimo da biossíntese de colesterol

Monascus purpureus

Pigmentos de M. purpureus

✓ redução dos níveis de colesterol total, colesterol HDL, e triacilglicerois plasmaticos em modelos animais com hiperlipidemia induzida pela alimentação.

✓ Varios agentes hipocolesterolêmicos foram encontrados e denominados monacolinas J,K e L.

Policetídeos com propriedade de inibir especificamente a enzima controladora da velocidade de biossíntese do colesterol, sendo usados na medicina chinesa tradicional e moderna (Dufossé et al., 2005).

Monascus purpureus

Pigmentos de M. purpureus

✓ Suplemento alimentar a base de *M. purpureus* (monacolina K) - relação aos níveis de colesterol plasmático similares ao do grupo-controle que fez uso de pravastatina. Nos dois grupos foram observados diferenças significativas na redução de colesterol total, colesterol LDL, e triglicerídeos totais, tanto em homens como em mulheres (Cicero et al., 2005).

✓ O trabalho apresentado não serve de afirmação para as propriedades benéficas do *M.purpureus,* mas como indicativo de futuras possibilidades de pesquisa.